Clustering with adaptive similarity
measure for track reconstruction

Connecting The Dots 2018

Sabrina Amrouche c.amrouche@cern.ch



mailto:c.amrouche@cern.ch

Learning to Track

Goal and Motivation

e HL-LHC will dramatically increase the reconstruction difficulty.
e Average 200 proton-proton collisions for HL-LHC.

e Combinatorics becomes very challenging (impossible).

e Need for generalization and adaptive behavior.

e Grouping sets of hits that originated from same particles.



Outline

e ML and tracking outside HEP
e The (many) Challenges

e The dataset

e The adaptive clustering

e Next steps



Tracking outside HEP
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Hunting patterns in ... Computer Vision

e Object identification
e Trajectories detection

e Deep learning

© wired.com


https://www.wired.com/
https://www.wired.com/2013/07/cara-placemeter-google-glass/

Hunting patterns in ... Computer Vision

Key differences

e Online
e Human density<< HEP
pileup

e Individual characteristics
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Hunting patterns in ... Bioinformatics

e Cells tracking
e Extremely complex tracks

e Random behaviors

© 2018 _Phasefocus.com
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http://phasefocus.com

Hunting patterns in ... Bioinformatics

Cells tracking
Extremely complex trajectories

Random behaviours

Dense environments over long

ir7] GO | we—m

Pseudo-trajectories generated from PIV data
(Baker, Richard M., et al)

periods
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Hunting patterns in ... Bioinformatics

Cells tracking
Extremely complex trajectories

Random behaviours

Dense environments over long

ir7] GO | we—m

periods

Pseudo-trajectories generated from PIV data
(Baker, Richard M., et al)

Colors based identification + Time component
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Cell tracking challenge

e |EEE International Symposium
on Biomedical Imaging 2013,
2014, 2015

e Open since 2017 for online
submissions and results are
public

e celltrackingchallenge.net

Welcome Organizers Description Datasets Registration
Evaluation Submission of Results Participants Latest Results

Tracking moving cells in time-lapse video sequences is a challenging task,
required for many applications in both scientific and industrial settings. Properly
characterizing how cells move as they interact with their surrounding
environment is key to understanding the mechanobiology of cell migration and its
multiple implications in both normal tissue development and many diseases. In
this challenge we objectively compare and evaluate state-of-the-art whole-cell
and nucleus tracking methods using both real (2D and 3D) time-lapse
microscopy videos of labeled cells and nuclei, along with computer generated
video sequences simulating nuclei moving in realistic environments.
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Grouping hits into the right
particles.

Bottom-up approach : until
inconsistency reached.

Distance measure such as:

d(hy hy) < d(hy,hy)

Vv i, € [0,N] where N : track size

Incorporate the domain
knowledge into the
distance
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layer \
The dataset .—[(xy,2), charge (q), pixelAngle 6, layerID ]

e Simulation with ACTS

e Example stat
o 110.961 points

o 10.080 trajectories
o ~ 11 point per track
We have the truth associations
— labels
Therefore : Accuracy metric

L

X Source : A.Salzburger
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Particles.csv

—— | particle_id (vx |vy vz |px | py pz  q

Hits.csv

| hit_id | volume_id | layer_id | module_id |x |y |z |ncells | ch0 | ch1 | value

Truth.csv

hit_id | particle_id |tx |ty |tz | tpx | tpy | tpz | weight

17



Creating initial sub-spaces

Clustered search space with K-means, showing: 1.5% of the total hits

1000 s " g, 204" o [
Colors identify subspaces

200 . s g gt el t.nar o .
Reducing the search

600
space by a factor of ~5. -
Favors parallelized 0 Pm—— ——
processing : subspace per = ——
core. . bt B
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Clustering v0



Metric 1 : Cosine on xyz

e Pairwise distance o

o distance= cos(0)= A.B/||A|L-IBI, e
e Hits to triplets
e 86% true triplets on 1 event (2668 particles)

o 0.98% true pairs ¢
Fig 1 Hits into triplets

e
/

d~1 d~0 d~1

Fig 2 Cosine definition



Triplets to tracks

Particles trajectories are helixes
Helix = circle (xy) + line (z)

A circle is formed by at least 3 points

Triplets — circle fit (xy) + line fit (z)

— distance to trajectory

Found triplet

Potential
candidates

\

|deal
trajectory
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The linkage metric

R Z plane
XY plane sqri(x*2+y"2)
found triplet . \
/ N [— d1 T
d2
R -
Adaptive distance = min(d1, d2) . i |
d1 0 t.
o distance to fitted circle .
o circle is updated after each merge ( ) » "
d2 :
o avoid grouping symmetric particles — ’
o Adds z coordinate constraint e 9o

Symmetric particles




Initial

trial

e Using a single metric on xyz (cosine) and add hits by distance to ideal track

initial clusters (seeds) are only triplets (sometimes less)

Score

0.85

® - cosine
—e— adaptv0 5
—e— adapt v0 6
—e— adaptv0 7

o Relying only on x.y.z
@)
o Search space for each found seed is too big
Nb particles Method Score
120 cosine (pre-clustering) | 0.78
0.86
Adaptive
1000 cosine 0.62
adaptive 0.68
1 event (2668 | cosine 0.48
particles) Adaptive 0.55

0.70
40 50 60 70 80 90 100

nb particles

~r-
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Clustering v1
-Augmented -
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Metric 1 : Cosine on xyz

e Pairwise distance

e distance= cos(0)= A.B/||A|L.|[BII,

A

/

d~1 d~0 d~1

Fig 2 Cosine definition

Fig 1

Hits into triplets
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Metric 2 : Euclidean on O, ¢ (pixel angles) -

Normalized frequency

e Pairwise distance

o distance= [|(0,,9,)-(0,-9,)Il

iff along tracks (5 events)
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Merging distance by pT ranges

0.8

0.7

e Considering 1000 particles

0.6

e Alternating performances

with regions o |
O o4
e Two metrics address different &

particles (types)

e Adding metrics increase

01

coverage

0.0




Finding optimal collaboration regions

0.012

Q55

0.010

Looking for a space where
both distances are

meaningful
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Found clusters have higher
confidences : Compact in

both metrics

Seeds and search space
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The kernel and the neighborhood

—— metric 1

—— Mmetric 2

e Seeds : Clusters found by both metrics
e Neighborhood: Union of disjoint labeling

= Kernel (seeds)
— == == neighborhood
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In reality...

Hierarchical Clustering Dendrogram (truncated)
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In reality...

Hierarchical Clustering Dendragram (truncated)
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Combining the distances

10
8
6
4
B
i 2 4 6 8 10 12

seeds size

e 50 particles example, 76 kernels
e Cut on kernel size

Frequency
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Combining the distances

0.6 —e— metric 1
--e-- | metric 2

—e— combination

0.5

0.4

0.3

Nb pure found particles

0.2

0.1

40 60 80 100 120 140
Nb truth particles

e Some of the seeds are already found/complete particles
e Final seeds are the intersection of the two clusterings
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Outlook and next steps

e Major difference to current Atlas impl

o No combinatorics, no consistency checks/matches.
o Larger seed dimensions (full particles retrieved).
o Search space reduced by adding more features.

e Any additional (engineered) feature will refine the neighborhood for speed and
accuracy.

o Time information will be added as an euclidean distance measure (ACTS)

e All clustering can be parallelised

34



Thank you

Questions?



Back-up



Tracks as functions

Functional data analysis

e Core idea: Turn sequence of individual

observations (hits) into a continuum
(functions).

e Study of the derived curves shape and

homogenous representation of different

size tracks.
e Algorithm :

o Splines fitting on 7D features
o Interpolation to extract coefficients
o Use coefficient to learn information
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Predict track quality from coefficients

e Train a regression model
on good/bad tracks with
their cost as target.

e Good prediction reflects
FD value.

e The model learns the V
quality of its output. '

Accuracy
P
 S——
{ S -
T
E—

TrackID
Cost prediction vs truth based on coefficients 38



Deep learning

Distance

10 4 =&~ predicted distance
i @ Truth distance
0.8 1
]

0.6 1

0.4 1

0.2 1

0.0 1

Hits pair id

0 25

Layer (type) Output Shape Connected to
input_9 (InputLayer) (None, 3)

input 10 (InputLayer) (None, 3)

merge 5 (Merge) (None, 6) input 9[0][0]

input_10[0][0]

dense 9 (Dense) (None, 6) merge 5[0]1[0]
dense 10 (Dense) (None, 1) dense 9[0][0]
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