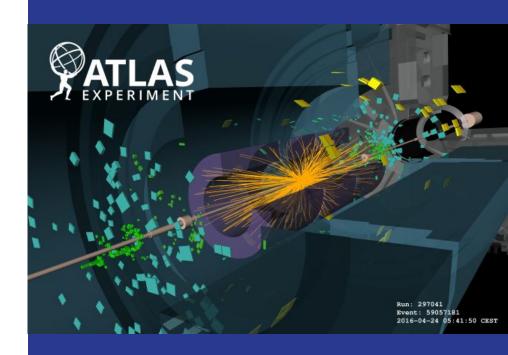
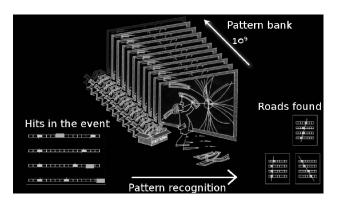


HEP-CCE


Quantum Pattern Recognition for High-Luminosity Era

Illya Shapoval, Paolo Calafiura

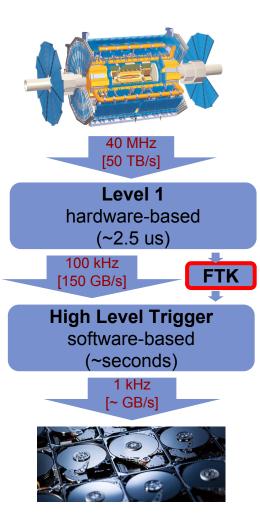
Lawrence Berkeley National Laboratory


ATLAS Real-time Pattern Recognition

ATLAS Fast Tracker (FTK)

LHC Run 2 (2015) - Run 3 (2023)

A HARDWARE FOR REAL-TIME GLOBAL TRACK FINDING



Requirements:

- ► Input: 10⁸ channels
- ► Latency: ~100 us
- Frequency: @100 kHz

- ► Storage: 8 · 10³ AM custom ASIC chips
- Power: ~32 kW (+ cooling)
- Capacity: 10⁹ track patterns
- ▶ Latency: average ~50 us, max ~180 us

Scalability of Associative Memory

Experiment	LHC Run 2-3
LHC Luminosity (cm ⁻² s ⁻¹)	~10 ³⁴
Tracks/event	~500
AM Capacity* (patterns)	10 ⁹
AM Storage* (AM chips)	8 · 10 ³
Density* (patterns/chip)	128k (65 nm)

^{*} Required by ATLAS physics and detector granularity

Scalability of Associative Memory

Experiment	LHC Run 2-3	HL-LHC (2026)
LHC Luminosity (cm ⁻² s ⁻¹)	~10 ³⁴	~10 ³⁵
Tracks/event	~500	5000
AM Capacity* (patterns)	10 ⁹	[8 - 16] • 10 ⁹
AM Storage* (AM chips)	8 · 10 ³	[2 - 4] · 8 · 10 ³
Density* (patterns/chip)	128k (65 nm)	~512k (28 nm)

^{*} Required by ATLAS physics and detector granularity

Scalability of Associative Memory

Experiment	LHC Run 2-3	HL-LHC (2026)	HE-LHC (2030s)
LHC Luminosity (cm ⁻² s ⁻¹)	~10 ³⁴	~10 ³⁵	~10 ³⁶
Tracks/event	~500		~50,000
AM Capacity* (patterns)	10 ⁹	[8 - 16] · 10 ⁹	?
AM Storage* (AM chips)	8 • 10 ³	[2 - 4] · 8 · 10 ³	?
Density* (patterns/chip)	128k (65 nm)	~512k (28 nm)	?

^{*} Required by ATLAS physics and detector granularity

- Location-addressable memory
 - Pattern capacity: **O(N/n)**, where N is the total number of **bits**, and **n** the pattern length
 - Slow recall (primitive cells and high address/word handling impedance)
 - Low cost and low power dissipation

- Location-addressable memory
 - Pattern capacity: **O(N/n)**, where N is the total number of **bits**, and **n** the pattern length
 - Slow recall (primitive cells and high address/word handling impedance)
 - Low cost and low power dissipation
- Associative memory (a.k.a content-addressable memory)
 - Pattern capacity: **O(N/n)** in classical schemes
 - Phopfield networks scale as O(N) (m≤kN, where 0.15≤k≤0.5)
 - ► Fast recall (0(1) cycle ops) (cells with dedicated compare/combine circuits)
 - High cost and high power dissipation

- Location-addressable memory
 - Pattern capacity: **O(N/n)**, where N is the total number of **bits**, and **n** the pattern length
 - Slow recall (primitive cells and high address/word handling impedance)
 - Low cost and low power dissipation
- Associative memory (a.k.a content-addressable memory)
 - ▶ Pattern capacity: **O(N/n)** in classical schemes
 - Phopfield networks scale as O(N) (m≤kN, where 0.15≤k≤0.5)
 - ► Fast recall (0(1) cycle ops) (cells with dedicated compare/combine circuits)
 - High cost and high power dissipation
- Quantum associative memory
 - Pattern capacity: $O(2^N)$, where N is the total number of qubits, and n the pattern length
 - Parall time needs evaluation, high volatility with hardware technology
 - Market costs are far from "ground state" yet, relaxation time is ~10-15 years

2. Quantum Associative Memory

Quantum Memory

Represent pattern $\xi^i \equiv (\xi_1, \xi_2, \dots, \xi_d)$ by a **basis state** in the Hilbert space of d quantum information units:

$$|\xi^i\rangle \equiv |\xi_1, \xi_2, \dots, \xi_d\rangle$$

▶ Represent Ξ - a set of N patterns - as **superposition** of the basis states:

$$|\Xi\rangle = \sum_{1}^{N} \alpha_i |\xi^i\rangle, \qquad \alpha_i \in \mathbb{C} \wedge \sum_{1}^{N} |\alpha_i|^2 = 1$$

QuAM Capacity

QuAM features exponential storage capacity of 2^d and requires $2(d+1)^1$ qubits to operate 2^d .

Length of detector hit identifier (bits)	8	16	32
Length of binary track pattern (bits) ³	64	128	256
QuAM register (qubits)	130	258	514
QuAM capacity (patterns)	~10 ¹⁹	~10 ³⁸	~10 ⁷⁷

¹ C.A Trugenberger, Probabilistic Quantum Memories. Phys Rev. Lett. Vol 87, 6 (2001)

² d is the pattern length

³8 logical layers of the Inner Tracker

QuAM Capacity

QuAM features exponential storage capacity of 2^d and requires $2(d+1)^1$ qubits to operate 2^d .

Length of detector hit identifier (bits)	8	16	32
Length of binary track pattern (bits) ³	64	128	256
QuAM register (qubits)	130	258	514
QuAM capacity (patterns)	~10 ¹⁹	~10 ³⁸	~10 ⁷⁷

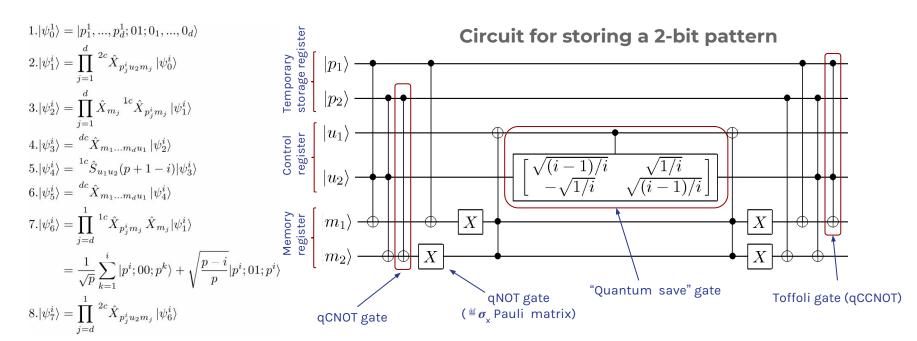
¹ C.A Trugenberger, Probabilistic Quantum Memories. Phys Rev. Lett. Vol 87, 6 (2001)

² d is the pattern length

³8 logical layers of the Inner Tracker

QuAM storage protocol

A quantum circuit implementing iterative part of the storage protocol ¹.

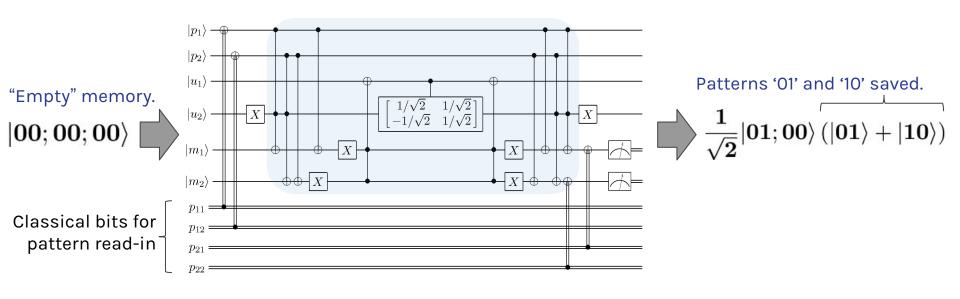

$$\begin{aligned} 1.|\psi_{0}^{1}\rangle &= |p_{1}^{1},...,p_{d}^{1};01;0_{1},...,0_{d}\rangle \\ 2.|\psi_{1}^{i}\rangle &= \prod_{j=1}^{d} {}^{2c}\hat{X}_{p_{j}^{i}u_{2}m_{j}} |\psi_{0}^{i}\rangle \\ 3.|\psi_{2}^{i}\rangle &= \prod_{j=1}^{d} \hat{X}_{m_{j}} {}^{1c}\hat{X}_{p_{j}^{i}m_{j}} |\psi_{1}^{i}\rangle \\ 4.|\psi_{3}^{i}\rangle &= {}^{dc}\hat{X}_{m_{1}...m_{d}u_{1}} |\psi_{2}^{i}\rangle \\ 5.|\psi_{4}^{i}\rangle &= {}^{1c}\hat{S}_{u_{1}u_{2}}(p+1-i)|\psi_{3}^{i}\rangle \\ 6.|\psi_{5}^{i}\rangle &= {}^{dc}\hat{X}_{m_{1}...m_{d}u_{1}} |\psi_{4}^{i}\rangle \\ 7.|\psi_{6}^{i}\rangle &= \prod_{j=d}^{1c} \hat{X}_{p_{j}^{i}m_{j}} \hat{X}_{m_{j}} |\psi_{1}^{i}\rangle \\ &= \frac{1}{\sqrt{p}} \sum_{k=1}^{i} |p^{i};00;p^{k}\rangle + \sqrt{\frac{p-i}{p}} |p^{i};01;p^{i}\rangle \\ 8.|\psi_{7}^{i}\rangle &= \prod_{j=d}^{1} {}^{2c}\hat{X}_{p_{j}^{i}u_{2}m_{j}} |\psi_{6}^{i}\rangle \end{aligned}$$

Circuit for storing a 2-bit pattern $|p_1\rangle$ $|p_2\rangle$ $|u_1\rangle$ $|u_2\rangle$ $|u_2\rangle$ $|u_3\rangle$ $|u_4\rangle$ $|u_5\rangle$ $|u_4\rangle$ $|u_5\rangle$ $|u_5\rangle$

¹C.A Trugenberger, Probabilistic Quantum Memories. Phys Rev. Lett. Vol 87, 6 (2001)

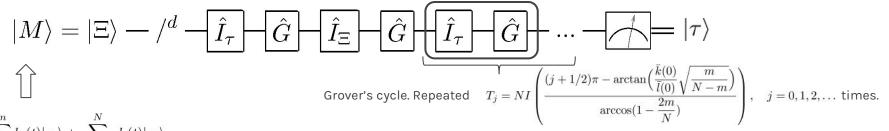
QuAM storage protocol

A quantum circuit implementing iterative part of the storage protocol ¹.



¹ C.A Trugenberger, Probabilistic Quantum Memories. Phys Rev. Lett. Vol 87, 6 (2001)

QuAM storage protocol


2-bit patterns example

The end-to-end circuit for storing two 2-bit patterns: "01" and "10"

QuAM retrieval protocol

Generalized Grover's algorithm*

States that States that don't match the match the target

target pattern. pattern.

 $\hat{I}_{ au}$ - "quantum oracle" operator. Inverts the phase of state representing the target pattern au.

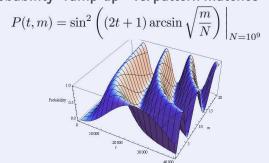
 \hat{G} - Grover's diffusion operator. Inverts all amplitudes about the amplitudes average.

 \hat{I}_{Ξ} - Inverts phases of all terms originally present in memory.

QuAM retrieval protocol

Generalized Grover's algorithm*

$$|M
angle = |\Xi
angle - /^d - \hat{I}_{ au} - \hat{G} - \hat{I}_{\Xi} - \hat{G} + \hat{I}_{ au} - \hat{G} - \hat{I}_{\Xi} - \hat{G} + \hat{I}_{ au} - \hat{G} - \hat{I}_{ au} - \hat{I}_$$


$$\sum_{i=1}^m k_i(t)|x_i\rangle + \sum_{i=m+1}^N l_i(t)|x_i\rangle$$

States that State match the matc target pattern. State

States that don't match the target pattern.

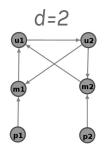
Probability "ramp-up" vs. pattern matches

Peak probability vs. pattern matches and memory capacity
$$P(m,N) = \sin^2\left((2t+1)\arcsin\sqrt{\frac{m}{N}}\right)\Big|_{t=T_j}$$

$$m = 1, N = 10^9 : T_0 = 24836, P_{max} = 0.99999999999955568$$

 $m = 20, N = 10^9 : T_0 = 5553, P_{max} = 0.9999999991404647$

Note: neither quantum noise, nor probabilistic memory cloning operations, are taken into account here.


 $[\]hat{I}_{ au}$ - "quantum oracle" operator. Inverts the phase of state representing the target pattern au.

 $[\]hat{G}\,$ - Grover's diffusion operator. Inverts all amplitudes about the amplitudes average.

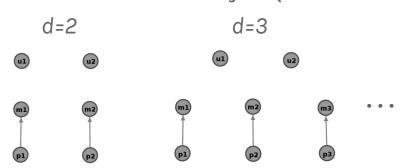
 I_{Ξ} - Inverts phases of all terms originally present in memory.

Topological complexity of QuAM¹

Storage connectivity requirements

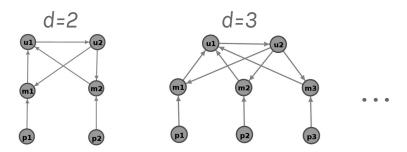
Retrieval connectivity requirements

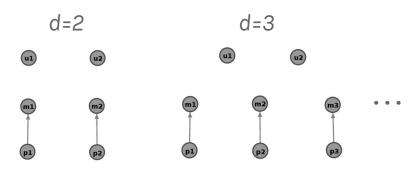



¹ **(p)**, **(u)** and **(m)** nodes represent qubits from temporary storage, control and memory registers. **d** - pattern length

Topological complexity of QuAM¹

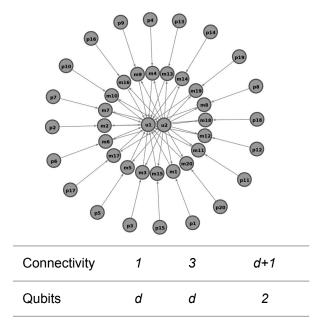
Storage connectivity requirements


Retrieval connectivity requirements


¹ (p), (u) and (m) nodes represent qubits from temporary storage, control and memory registers. d - pattern length

Topological complexity of QuAM¹

Storage connectivity requirements



Retrieval connectivity requirements

Cumulative QuAM requirements

d=20 (~ current pattern length in ATLAS)

¹ **(p)**, **(u)** and **(m)** nodes represent qubits from temporary storage, control and memory registers. **d** - pattern length

QuAM on QISKit

QISKit - Quantum Information Software Kit

An open source project comprising Python SDK, API and OpenQASM for implementing quantum algorithms on **IBM Quantum Experience (QE)** hardware and simulators.

Supported backends:

- ► IBM QE cloud-based quantum chips [5Q Sparrow/Raven, 16Q Albatross, 20Q]
- Local/remote simulators [with realistic noise models]

QuAM on QISKit

QISKit - Quantum Information Software Kit

An open source project comprising Python SDK, API and OpenQASM for implementing quantum algorithms on **IBM Quantum Experience (QE)** hardware and simulators.

Supported backends:

- IBM QE cloud-based quantum chips [5Q Sparrow/Raven, 16Q Albatross, 20Q]
- Local/remote simulators [with realistic noise models]

QuAM storage circuit generator [implemented]


Ex.: complete circuit for encoding three 2-bit patterns

QuAM retrieval circuit generator [being tested]

Ex.: complete circuit for retrieving one 2-bit pattern

Storage QASM

Retrieval QASM

3.

Challenges and Opportunities

Challenges and Opportunities

Hardware

QuAM demonstrated on

- NMR systems
- Optical systems
- D-Wave system

for low-order patterns.

High-order patterns require higher qubits connectivity and compliant processor topology.

Emerging Quantum Technologies

Qua	antum Chip	Qubits	Announced	Qubit Archetype	Computing Model
D-Wave 2000Q	D. Craw	2048	01/2017	Superconducting flux qubits	Quantum annealing
IBMO IBMO	ISMQ	20	11/2017	Superconducting transmon qubits	Quantum
IBM 20Q and 50Q		50	11/2017 (tests)		circuits
Rigetti 19Q		19	12/2017	Superconducting transmon qubits	Quantum circuits
Intel Tangle Lake		49	01/2018 (tests)	Superconducting qubits ¹	Quantum circuits
$\langle \mathbf{G} \mathbf{oogl} \mathbf{e} angle$ Bristlecone		72	03/2018 (tests)	Superconducting transmon qubits	Quantum circuits
UC Berkeley QNL	ralay ONII	4 (8)	2017	Superconducting	Quantum circuits
		64	2022 ?	transmon qubits	Circuits

¹ Archetype of superconducting qubits is not disclosed. Also investing in spin qubits in silicon.

Emerging Quantum Technologies

Qua	antum Chip	Qubits	Announced	Qubit Archetype	Computing Model
D-Wave 2000Q	DIAMENA	2048	01/2017	Superconducting flux qubits	Quantum annealing
IBM 20Q and 50Q	IBMQ	20	11/2017	Superconducting transmon qubits	Quantum circuits
IDIVI ZUQ AITU JUQ		50	11/2017 (tests)		Circuits
Rigetti 19Q		19	12/2017	Superconducting transmon qubits	Quantum circuits
Intel Tangle Lake		49	01/2018 (tests)	Superconducting qubits ¹	Quantum circuits
$\langle \mathbf{G} \mathbf{oogl} \mathbf{e} angle$ Bristlecone		72	03/2018 (tests)	Superconducting transmon qubits	Quantum circuits
UC Berkeley QNL		4 (8)	2017	Superconducting	Quantum circuits
		64	2022 ?	transmon qubits	Circuits

¹ Archetype of superconducting qubits is not disclosed. Also investing in spin qubits in silicon.

Challenges and Opportunities

Hardware

Functional trade-offs

QuAM demonstrated on

- NMR systems
- Optical systems
- ► D-Wave system for low-order patterns. High-order patterns require higher qubits connectivity and compliant processor topology.

AM generates, completes, and validates track patterns:

QuAM completes and validates track patterns:

Challenges and Opportunities

Hardware

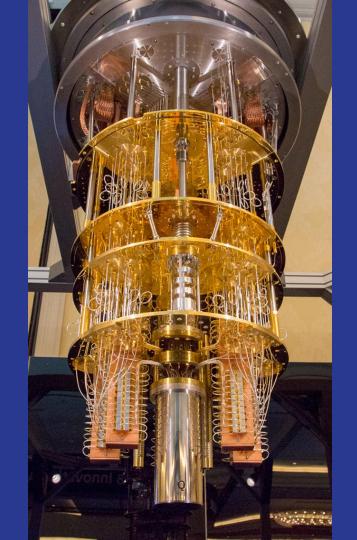
Functional trade-offs

Memory persistence

QuAM demonstrated on

- NMR systems
- Optical systems
- ► D-Wave system for low-order patterns. High-order patterns require higher qubits connectivity and compliant processor topology.

AM generates, completes, and validates track patterns:


QuAM completes and validates track patterns:

Memory state collapses with each query.
Repetitive re-initialization is a show stopper. A possible solution may employ probabilistic cloning of memory reducing efficiency.

Summary

- QC paradigm can yield asymmetrical advantages in handling certain challenges of HL/HE HEP real-time track pattern recognition
- QuAM features:
 - Exponential storage capacity
 - Optimal QA for pattern recall
- Current status:
 - Theoretical analysis of QuAM properties completed
 - Memory initialization iterations
 - Recall probability bounds
 - Topological complexity analysis
 - Storage/retrieval quantum circuit generators implemented in QISKit
 - Ready to run on real quantum hardware
- Coming soon:
 - QuAM on the latest quantum hardware (targeting IBM QE chips)
 - QuAM performance tests (timing, efficiency)

