

Track Reconstruction in the ALICE TPC using GPUs for LHC Run 3

David Rohr for the ALICE Collaboration drohr@cern.ch, CERN *Connecting the Dots 2018* 21.3.2018

ALICE Upgrade for Run 3

- ALICE uses mainly 3 detectors for tracking: ITS, TPC, TRD + (TOF)
- Luminosity will increase significantly in Run 3:
 500 Hz 1 kHz trigged → 50 kHz continuous min-bias Pb-Pb.
 - We want to adapt the HLT tracking for Run 3.
 - Ideally, create one tracker as fast as the HLT version with competitive resolution to the offline version.
- 50+ times as many events!

50+ times as much data?

ALICE Upgrade for Run 3

- ALICE uses mainly 3 detectors for tracking: ITS, TPC, TRD + (TOF)
- Luminosity will increase significantly in Run 3:
 500 Hz 1 kHz trigged → 50 kHz continuous min-bias Pb-Pb.
 - We want to adapt the HLT tracking for Run 3.
 - Ideally, create one tracker as fast as the HLT version with competitive resolution to the offline version.

ALICE Upgrade for Run 3

- ALICE uses mainly 3 detectors for tracking: ITS, TPC, TRD + (TOF)
- Luminosity will increase significantly in Run 3:
 500 Hz 1 kHz trigged → 50 kHz continuous min-bias Pb-Pb.
 - We want to adapt the HLT tracking for Run 3.
 - Ideally, create one tracker as fast as the HLT version with competitive resolution to the offline version.

Implications of the ALICE Upgrade for Tracking

- ALICE will perform a major upgrade for high luminosity data taking.
 - This includes the entire computing infrastructure: ALICE Online Offline Computing Upgrade O².

Proton-Lead

David Rohr, drohr@cern.ch

Longitudinal crosssection of time frame in TPC, different collisions in different color.

Lead-Lead

Longitudinal crosssection of time frame in TPC, different collisions in different color.

Lead-Lead

Longitudinal crosssection of time frame in TPC, different collisions in different color.

• Time frame with pp collisions.

21.3.2018

Lead-Lead

Lead-Lead time frame at 50 kHz collision rate

- Outline of this talk (Tracking plans of ALICE):
 - Use fast online algorithms for O².
 - Focus on TPC Tracking (short summary for other detectors).
 - Improve HLT tracking to reach Offline Quality.
 - Adapt to the settings of O2.
 - Calibration
 - Tracking of time frames
 - Data compression

Tracking in ALICE

ALICE uses mainly 3 detectors for tracking: ITS, TPC, TRD + (TOF)

- 7 layers ITS (Inner Tracking System silicon tracker)
- 152 pad rows TPC (Time Projection Chamber)
- 6 layers TRD (Transition Radiation Detector)
- **1 layer TOF** (Time Of Flight Detector)
- Today, ALICE has two tracking implementations for the TPC:
 - A fast online tracker in the HLT.
 - The offline TPC tracker as reference.
 - Both use the Kalman filter for track following and track fitting.
 - The HLT uses a Cellular Automaton for seeding.
- Other detectors:
 - HLT and offlline tracker for ITS (TPC prolongation).
 - No HLT TRD tracking so far.
 - TOF can be used as single last tracking layer.

ONLINE TRACKING WITH OFFLINE QUALITY

David Rohr, drohr@cern.ch

Run 3 Tracking derived from current tracking in ALICE HLT

- TPC Volume is split into 36 sectors.
 - The tracker processes each sector individually.
 - Increases data locality, reduce network bandwidth, but reduces parallelism.
 - Each sector has 159 read out rows in radial direction.
 - Tracking runs in 2 phases:
- 1. Phase: Sector-Tracking (within a sector)
 - Heuristic, combinatorial search for track seeds using a Cellular Automaton.
 - A) Looks for three hits composing a straight line (link).
 - B) Concatenates links.
 - Fit of track parameters, extrapolation of track, and search for additional clusters using the **Kalman Filter**.

Run 3 Tracking derived from current tracking in ALICE HLT

- TPC Volume is split into 36 sectors.
 - The tracker processes each sector individually.
 - Increases data locality, reduce network bandwidth, but reduces parallelism.
 - Each sector has 159 read out rows in radial direction.
 - Tracking runs in 2 phases:
- 1. Phase: Sector-Tracking (within a sector)
 - Heuristic, combinatorial search for track seeds using a Cellular Automaton.
 - A) Looks for three hits composing a straight line (link).
 - B) Concatenates links.
 - Fit of track parameters, extrapolation of track, and search for additional clusters using the **Kalman Filter**.
- 2. Phase: Track-Merger
 - Combines the track segments found in the individual sectors.
- Phase 1 track finding implemented in a common generic source code, that runs on CPU and GPU, supporting CUDA, OpenCL, and OpenMP.

Tracking efficiency (Run 2, HLT v.s. Offline – Pb-Pb)

Track resolution (Run 2, Pb-Pb, no space-charge distortions)

- HLT / Offline resolution practically identical (no space-charge distortions).
- Improvements in HLT tracking:
 - Propagation using polynomial approximation of 3D B-field.
 - Outlier cluster rejection during refit.
 - Improved cluster error parameterization, depending on flags set by clusterizer. (edge, deconvoluted, ...)
 - 3-way fit.
 (inward, outward, inward)
- Absolutely same result for pp. (see backup)

Track resolution (Run 2, Pb-Pb, with space-charge distortions)

- Small differences with space-charge distortions.
- Similar structure in y-resolution.
- HLT/O² has not been tuned for distortions so far.
- Only using systematic cluster error parameterization obtained from offline distortion map residuals.

RECONSTRUCTION AND CALIBRATION IN RUN 3

David Rohr, drohr@cern.ch

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

Problem: TPC clusters have no defined z-position but

only a time. They can be shifted in z arbitrarily.

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.

21.3.2018

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
- Standalone ITS tracking.

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
- Standalone ITS tracking.
- Standalone TPC tracking, scaling t linearly to an arbitrary z.

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
- Standalone ITS tracking.
- Standalone TPC tracking, scaling t linearly to an arbitrary z.
- Extrapolate to x = 0, define z = 0 as if the track was primary.

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
- Standalone ITS tracking.
- Standalone TPC tracking, scaling t linearly to an arbitrary z.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
- Standalone ITS tracking.
- Standalone TPC tracking, scaling t linearly to an arbitrary z.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.
- Refine z = 0 estimate, refit track with best precision

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
- Standalone ITS tracking.
- Standalone TPC tracking, scaling t linearly to an arbitrary z.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.
- Refine z = 0 estimate, refit track with best precision
- For the tracks seen in one ITS read out frame, select all TPC events with a matching time (from z = 0 estimate).

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
- Standalone ITS tracking.
- Standalone TPC tracking, scaling t linearly to an arbitrary z.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.
- Refine z = 0 estimate, refit track with best precision
- For the tracks seen in one ITS read out frame, select all TPC events with a matching time (from z = 0 estimate).
- Match TPC track to ITS track, fixing the time and thus the z position of the TPC track.

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
- Standalone ITS tracking.
- Standalone TPC tracking, scaling t linearly to an arbitrary z.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.
- Refine z = 0 estimate, refit track with best precision
- For the tracks seen in one ITS read out frame, select all TPC events with a matching time (from z = 0 estimate).
- Match TPC track to ITS track, fixing the time and thus the z position of the TPC track.
- Refit ITS + TPC track outwards.

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
- Standalone ITS tracking.
- Standalone TPC tracking, scaling t linearly to an arbitrary z.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.
- Refine z = 0 estimate, refit track with best precision
- For the tracks seen in one ITS read out frame, select all TPC events with a matching time (from z = 0 estimate).
- Match TPC track to ITS track, fixing the time and thus the z position of the TPC track.
- Refit ITS + TPC track outwards.
- Prolong into TRD / TOF.
The tracking challenge

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- GEM amplifications produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
- Standalone ITS tracking.
- Standalone TPC tracking, scaling t linearly to an arbitrary z.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.
- Refine z = 0 estimate, refit track with best precision
- For the tracks seen in one ITS read out frame, select all TPC events with a matching time (from z = 0 estimate).
- Match TPC track to ITS track, fixing the time and thus the z position of the TPC track.
- Refit ITS + TPC track outwards.
- Prolong into TRD / TOF.

z (beam and TPC drift direction)

[•] Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.

Tracking with GEM TPC, plan for Run3

- Run 2 tracking needs on thy fly calibration...
 - ...and cluster conversion from row, pad, time to x, y, z.
 - Online calibration exercised in the HLT for TPC drift velocity.
 - No difference to Offline drift velocity calibration.
 - Online calibration with feedback loop: Calibration produced during n seconds / minutes used for the following n seconds / minutes.
 - Two space-charge distortion calibration algorithms foreseen.
 - 1. ITS TRD interpolation (see next slide).
 - 2. Integrated digital currents.
- The first is already running for Run 2 offline, the second requires continuous read out.
- Work ongoing to perform most of the distortion calibration work online.
- A related problem imposed by the distortions:
 - The tracking must perform the Kalman update at the correct radius even when clusters are seen at the wrong pad row.

David Rohr, drohr@cern.ch

- Reconstruct TPC tracks with relaxed tolerances (applying "default distortion maps" if available)
- Match to ITS and TRD/TOF with relaxed tolerances
- Refit ITS-TRD-TOF part and interpolate to TPC as a reference of the true track position at every pad-row
- Collect Y, Z differences between distorted clusters and reference points in sub-volumes (voxels) of TPC
- Extract 3D vector of distortion in every voxel
- Create smooth parameterization (fast interpolation by Chebyshev polynomials) to use for correction during following reconstruction
- Distortions change with time: 40 min intervals. (min 15-20 min for statistics)
- 15 (in Y/X) x 5 (in Z/X) voxels per padrow \Rightarrow ~430K in total

- Reconstruct TPC tracks with relaxed tolerances
 (applying "default distortion maps" if available)
- Match to ITS and TRD/TOF with relaxed tolerances
- Refit ITS-TRD-TOF part and interpolate to TPC as a reference of the true track position at every pad-row
- Collect Y, Z differences between distorted clusters and reference points in sub-volumes (voxels) of TPC
- Extract 3D vector of distortion in every voxel
- Create smooth parameterization (fast interpolation by Chebyshev polynomials) to use for correction during following reconstruction
- Distortions change with time: 40 min intervals. (min 15-20 min for statistics)
- 15 (in Y/X) x 5 (in Z/X) voxels per padrow \Rightarrow ~430K in total

- Reconstruct TPC tracks with relaxed tolerances
 (applying "default distortion maps" if available)
- Match to ITS and TRD/TOF with relaxed tolerances
- Refit ITS-TRD-TOF part and interpolate to TPC as a reference of the true track position at every pad-row
- Collect Y, Z differences between distorted clusters and reference points in sub-volumes (voxels) of TPC
- Extract 3D vector of distortion in every voxel
- Create smooth parameterization (fast interpolation by Chebyshev polynomials) to use for correction during following reconstruction
- Distortions change with time: 40 min intervals. (min 15-20 min for statistics)
- 15 (in Y/X) x 5 (in Z/X) voxels per padrow \Rightarrow ~430K in total

- Reconstruct TPC tracks with relaxed tolerances
 (applying "default distortion maps" if available)
- Match to ITS and TRD/TOF with relaxed tolerances
- Refit ITS-TRD-TOF part and interpolate to TPC as a reference of the true track position at every pad-row
- Collect Y, Z differences between distorted clusters and reference points in sub-volumes (voxels) of TPC
- Extract 3D vector of distortion in every voxel
- Create smooth parameterization (fast interpolation by Chebyshev polynomials) to use for correction during following reconstruction
- Distortions change with time: 40 min intervals. (min 15-20 min for statistics)
- 15 (in Y/X) x 5 (in Z/X) voxels per padrow \Rightarrow ~430K in total

- Reconstruct TPC tracks with relaxed tolerances
 (applying "default distortion maps" if available)
- Match to ITS and TRD/TOF with relaxed tolerances
- Refit ITS-TRD-TOF part and interpolate to TPC as a reference of the true track position at every pad-row
- Collect Y, Z differences between distorted clusters and reference points in sub-volumes (voxels) of TPC
- Extract 3D vector of distortion in every voxel
- Create smooth parameterization (fast interpolation by Chebyshev polynomials) to use for correction during following reconstruction
- Distortions change with time: 40 min intervals. (min 15-20 min for statistics)
- 15 (in Y/X) x 5 (in Z/X) voxels per padrow \Rightarrow ~430K in total
- For Run 3: In addition, integrate the digital currents at the TPC pads to account for fluctuations in the distortions.

Running offline

• To be implemented for

HLT during Run 2 as

prototype for Run 3

reconstruction in the

HLT (not available yet)

Needs TRD and TOF

TPC TIME FRAME TRACKING IN O²

David Rohr, drohr@cern.ch

Time frame tracking / robustness

- The following plots...
 - Compare the HLT / O² tracking for different scenarios (pile-up, time frame length, interaction rate, ...)
 - Exact same data as before (same events, but reshuffled and arranged in time frames).
 - Raw QA of all tracks, no cuts except for $|\eta| < 0.9$.
 - Full time frame border simulated. Collisions with incomplete drift time ignored on QA (Quality Assurance) level.
 - In order to compare only the tracking algorithm, events are overlapped on the level of clusters \rightarrow no clusterization effects.

Multiplicity / event pile-up (pp)

- Overlaying up to $\mu = 100$ pp TPC events (in-bunch pile-up) has absolutely no impact on efficiency, minimal impact on fake rate.
- At 300 overlaid pp events, one starts to see a small deterioration in the efficiency below 120 MeV/c.
- Above (at μ = 1000), there is a significant effect, but the tracking still works.
- Pile-up has does not affect resolution at all.

Normal tracking / z-independent tracking

- In continuous tracking, the absolute z-position of the track is not known, but estimated from the assumption that the track is primarily pointing towards the origin (B-field and cluster errors are computed under this assumption).
- Naturally, secondary tracks suffer a bit, while primaries are mostly unaffected. .
- No significant difference between Run 2 tracking and z-independent Run 3 tracking.

21.3.2018

Length of time frame

- Identical result independent of length of time frame.
 - No problem with floating point precision / representation (thanks to shift in z).

Tracking time frames at different interaction rates

- Simulation uses correct bunch structure as expected for Run 3 Pb-Pb(from ALICE TPC upgrade TDR).
- Practically no deterioration of resolution, even at 50 kHz.
- Minor efficiency decrease below 150 MeV/c.
- Still, fake rate increases with interaction rate (in particular for low p_T) Should improve with better merging.

Tracking time (Run 2 / Pb-Pb)

- Speed-up normalized to single core.
 - For the blue curve, this is exactly the speed-up.
 - For the GPU curves, this is corrected by the CPU resources required for GPU pre- and postprocessing.
 - How many cores does the GPU replace.
- Significant (>20x) speedup compared to offline.
- A modern GPU replaces about 40 cores @4.2 GHz.
- Significant gain with new GPU models.
- One GPU replaces >800 CPU cores running Offline tracking. (at same efficiency / resolution)

18 / 27

David Rohr, drohr@cern.ch

21.3.2018

DATA COMPRESSION & LOOPER REJECTION

David Rohr, drohr@cern.ch

Data Compression

Data compression steps:

- Online cluster finding (in hardware on FPGA).
 - Enables better entropy compression.
 - Can perform noise suppression.
- Entropy reduction steps.
 - Fixed point integer format.
 - Store differences instead of absolute positions.
 - Use track model to reduce position / charge entropy.
- Entropy encoding.
 - Huffman encoding (Run 1 2) / Arithmetic encoding / ANS / etc.

Data Compression

Data compression steps:

- Online cluster finding (in hardware on FPGA).
 - Enables better entropy compression.
 - Can perform noise suppression.
- Entropy reduction steps.
 - Fixed point integer format.
 - Store differences instead of absolute positions.
 - Use track model to reduce position / charge entropy.
- Entropy encoding.

2

Factor

- Huffman encoding (Run 1 2) / Arithmetic encoding / ANS / etc.
- Remove clusters of tracks not used for physics:
 (looping tracks below 50 MeV/c, additional legs of tracks below 200 MeV/c, track segments with high inclination angle)
 - Normal TPC tracking finds low- p_{T} tracks down to 10 MeV/c.
 - "Afterburner" (Hough transform, machine learning, etc.) finds what is left.

Work in Progress

10⁴

 10^{3}

10²

10

Overview of compression achieved per TPC compression step

Configuration							
Data	2013	2016 pp	2015 Pb-Pb	2017 рр	2017 pp	2016 pp	2015 Pb–Pb
TPC gas	neon	argon	argon	neon	neon	argon	argon
RCU version	1	2	1	2	2	2	2
Cluster finder version	run 1	old	old	old	improved	improved	improved
Compression version	run 1 / 2	run 1 / 2	run 1 / 2	run 1 / 2	run 1 / 2	run 3 prototype	run 3 prototype
Compression step							
Cluster finder	1.20x	1.50x	1.28x	1.42x	1.81x	1.72x	1.70x
Branch merging	1.05x	-	1.05x	-	-	-	-
Integer format	2.50x	2.50x	2.50x	2.50x	2.40x	2.40x	2.40x
(bits per cluster)	77 bits	77 bits	77 bits	77 bits	80 bits	80 bits	80 bits
Entropy reduction							
Position differences	-	2% / -1.2 bits	16% / -7.2 bits	2% / -1.0 bits	2% / -1.0 bits	-1.0 bits	-4.5 bits
Track model	-	-	-	-	-	-14.5 bits	-14.3 bits
Track model + differences	-	-	-	-	-	-8.0 bits	-8.41 bits
Logarithmic precision	-	-	-	-	15% / -6.6 bits	-7.3 bits	-7.3 bits
Entropy encoding							
Huffman coding	1.36x	1.49x	1.75x	1.46x	1.68x	2.08x	2.12x
Arithmetic coding	-	-	-	-	-	2.18x	2.22x
Total compression	4.26x	5.58x	5.89x	5.18x	7.28x	9.00x	9.10x
(bits per cluster)	56.6 bits	51.7 bits	44.0 bits	52.8 bits	47,7 bits	36,7 bits	36,0 bits

• Overview of compression achieved per TPC compression step

Configuration							
Data	2013	2016 pp	2015 Pb-Pb	2017 pp	2017 pp	2016 pp	2015 Pb–Pb
TPC gas	neon	argon	argon	neon	neon	argon	argon
RCU version	1	2	1	2	2	2	2
Cluster finder version	run 1	old	old	old	improved	improved	improved
Compression version	run 1 / 2	run 1 / 2	run 1 / 2	run 1 / 2	run 1 / 2	run 3 prototype	run 3 prototype
Compression step	r						
Cluster finder	1.20:	Run 3 compr	ession proto	type: factor	9.1.	1.72x	1.70x
Branch merging	1.05:	Track mo	del compress	sion stores o	cluster to	-	-
Integer format	2.50;	track resi	duals instead	d of absolute	2	2.40x	2.40x
(bits per cluster)	77 bit	nositiona			•	80 bits	80 bits
Entropy reduction		positions	•				
Position differences		Arithmetic	c encoding (s	small improv	ement of	-1.0 bits	-4.5 bits
Track model		4-5%.				-14.5 bits	-14.3 bits
Track model + differences		General in	mprovements	5.		-8.0 bits	-8.41 bits
Logarithmic precision						-7.3 bits	-7.3 bits
Entropy encoding		Next step: re	ject clusters	not used for	[,] physics.		
Huffman coding	1.36	Goal: 20x tot	al compressi	on factor.		2.08x	2.12x
Arithmetic coding					-	2.18x	2.22x
Total compression	4.26x	5.58x	5.89x	5.18x	7.28x	9.00x	9.10x
(bits per cluster)	56.6 bits	51.7 bits	44.0 bits	52.8 bits	47,7 bits	36,7 bits	36,0 bits

- Idea: store only residuals of clusters to extrapolated track.
 - Smaller entropy than absolute (differential) coordinates \rightarrow Better Huffman compression.
 - Constraint: Clusters shall be stored in native TPC coordinates (Row, Pad, Time), independent from calibration.

- Idea: store only residuals of clusters to extrapolated track.
 - Smaller entropy than absolute (differential) coordinates \rightarrow Better Huffman compression.
 - Constraint: Clusters shall be stored in native TPC coordinates (Row, Pad, Time), independent from calibration.

- Idea: store only residuals of clusters to extrapolated track.
 - Smaller entropy than absolute (differential) coordinates \rightarrow Better Huffman compression.
 - Constraint: Clusters shall be stored in native TPC coordinates (Row, Pad, Time), independent from calibration.

Work in Progress

- Idea: store only residuals of clusters to extrapolated track.
 - Smaller entropy than absolute (differential) coordinates → Better Huffman compression.
 - Constraint: Clusters shall be stored in native TPC coordinates (Row, Pad, Time), independent from calibration.
- Problems:
 - Helix prolongation yields large residuals → inefficient compression.
 - Linear back-transformation cannot revert transformation based on full calibration.
 - Helix cannot accommodate space charge distortions in the TPC.

Large residuals to raw coordinates

- Solution:
 - Employ fast, reversible polynomial approximation. (In principle, every transformation works, but the closer the better!)

- Solution:
 - Employ fast, reversible polynomial approximation. (In principle, every transformation works, but the closer the better!)
 - Refit track in distorted coordinate system.

- Solution:
 - Employ fast, reversible polynomial approximation. (In principle, every transformation works, but the closer the better!)
 - Refit track in distorted coordinate system.

- Non-associated clusters still compressed with differences scheme.
- Additional benefit: Cluster to track association is stored → Track found in HLT / synchronous phase available later.

Tracking of low-*p***_T tracks**

- Track-merging and fit improved for low-p_T:
 - Most legs reconstructed correctly (green)
 - Refit fails rarely (only 1 white leg left).
 - Most legs merged on at least one side.
 - Cannot merge on both sides right so far.
 - Some seeds left, which do not make it to tracks.
 - Track fit fails for seeds below 10 MeV/c.
 - Some track-fit failures remain to be understood.
- Green: Final tracks
- Blue: Unused clusters
- Purple: Segments found in first CA seeding phase but track prolongation did not find good track.
- White: Track prolongation found track, but the track is rejected later.

Low- p_{T} looper finding

- Very good efficiency down to 10 MeV/c.
- Practically zero fake-cluster attachment for single Pb-Pb event processing.
- Small but non-zero fake attachment at 50 kHz.
- Small difference in fraction of attached hits.
- With additional feature to attach all adjacent hits, attachment rate should be close to the blue / orange curves.

10

Clusters Pt Distribution / Attachment (relative to all clusters)

Efficiency, Pb-Pb, 50kHz

21.3.2018

ALI-PERF-143856

10

David Rohr, drohr@cern.ch

10

Cluster removal for O²

- Strategy: Track as low in p_{T} as possible with relaxed cuts (number of clusters, etc.), merge legs to get sufficient track quality.
 - Attach all adjacent clusters using inter- / extrapolation.
- Remove all clusters assigned to
 - Tracks below 50 MeV/c.
 - Additional legs of tracks below 200 MeV/c.
 - High inclination-angle track segments.
- Use other method to remove what is left after tracking.
- Cluster statistics:
 - Purple: all clusters
 - Red: clusters attached to the correct track.
 - Green: clusters attached to wrong track.
 - Blue: All clusters (if attached or not) of a reconstructed track.
- Shared clusters and multiple-attached clusters are shown multiple times weighted correctly, so that the integral yields the total number of clusters.

Clusters Pt Distribution / Attachment (integrated)

David Rohr, drohr@cern.ch

OTHER DETECTORS & THE GLOBAL PICTURE

David Rohr, drohr@cern.ch

Online TRD tracking in the HLT and for Run 3

¥

David Rohr, drohr@cern.ch

Laver 1

Layer 2

- Space-Charge Distortion Calibration requires online TRD tracking.
 - Offline tracking uses offline tracklets created from hits around TPC tracks.
 - Not available in Run 3, use online tracklets created by TRD readout.
- **Same matching efficiency** for online and offline tracklets > 1.5 GeV/c.
- Efficiency drop at low p_T is caused by the absence of online tracklets (currently optimized for electron trigger at p_T > 3 GeV/c)
- Algorithm: Extrapolate TPC track through TRD layers, find closest tracklet.
- Next steps:
 - Decision-tree based algorithm foreseen if needed for high occupancy.
 - Extending matching to $p_{\rm T} \sim 0.6 \text{ GeV}/c$ is important both for:
 - Disentangling between radial and r ϕ distortions. $_{Layer \; 0}$
 - Bridging TPC tracks to TOF.
 - Add TOF detector as well.

TPC-ITS matching performance

- TPC-ITS matching for O² implemented and principally working.
 - Currently, significant amount of fake matches.
 - Unmerged loopers cause many fake matches.
 - Still working with loose time bracketing to avoid problems with inaccurate TPC vertex time estimate.

- ALICE Run 3 upgrade is a major challenge for online computing / tracking / data compression.
- Improved HLT tracking used for O².
- Identical resolution, equal or better efficiency compared to Run 2 offline tracking.
- TPC tracking very robust.
 - Length of time frame plays no role.
 - No effect until μ = 100, negligible effect at μ = 300, operational at reduced efficiency at μ = 1000.
 - No significant problem with interaction rates up to 50 kHz (only fake rate increases, should be mitigated by better merging).
 - Same resolution and efficiency for z-independent time frame tracking.
- GPU replaces about 40 CPU cores @ 4.2 GHz (GTX 1080 v.s. Core i7 6700K).
 - Tracking time is completely linear with number of TPC clusters.
 - > 20x faster than Run 2 offline tracker (on the CPU).
- Good low- p_T tracking efficiency for secondaries / loopers down to 10 MeV/c (55% at 10 MeV/c, > 80% above 30 MeV/c).
 - Will allow rejection of significant fraction of clusters attached to tracks not used for physics.
 - Remaining clusters compressed with factor 9.1 using track model and entropy encoding, aiming for 20x total compression.
- TPC and ITS tracking / merging available in O² software.
 - TRD tracking and TPC data compression being commissioned.
 - Online calibration scheme tested partially in Run 2 HLT.

Tracking efficiency / resolution (Run 2, HLT v.s. Offline – pp)

- For reference (same situation for pp).
 - Identical resolution.
 - Same efficiency for primaries.
 - Better efficiency for secondaries / low p_T.

21.3.2018

TPC Track Reconstruction Status

List of tracking improvements

- Some improvements to tracking efficiency and resolution, in particular low-p_T
- Finally implemented fully z-independent tracking for O² (can shift clusters in Z, assuming it is a primary pointing to the vertex at Z = 0).
- Finally performed tuning of cluster rejection.
- Using offline error parameterization.
- Some features needed for O² TPC-ITS matching.
- Finalized work on 3-way track fit with full 3d magnetic field parameterization.
- Full O2 / HLT tracking available in official ALICE repositories and default build.
- Outer TPC parameters available in HLT farm for TRD tracking.

• Still missing:

- Full low- p_{T} merging still not implemented (clone rate higher than before due to better efficiency).
- Prolongation and merging across central electrode.
- Attaching all adjacent clusters to tracks for looper rejection and better track model compression.
- Test HLT tracking with run 3 distortions.
- Update of compression prototype / retest compression in run 3 scenario.

Related:

- Work on calibration / transformation framework (O² needs tracking in pad, row, time → transformation during the tracking on GPU).
- TPC Online Calibration could now provide histograms for TPC online QA.

TPC Track Reconstruction Status

In summary: what has changed:

- With all the recent tuning, in particular cluster rejection, and usage of offline cluster error parameterization, HLT / O² TPC tracking reaches equal resolution as offline track reconstruction (in overall plot, special cases like tracks going through the dead zone might still be different).
- Track fit time increases significantly (3-way fit, etc.), but still faster than track finding and room for tuning.
- Full TPC tracking available in O² in official repository, used for TPC / ITS matching.
- All major apparent issues solved.
- I'd consider this a good baseline now (having the same resolution as offline in Run 2).
 - From now, we go on and optimize for Run 3 we only need to maintain the resolution and we'll be as good as today.

The following plots...

- ...basically repeat all of the comparisons shown during last offline weeks / tracking presentations / conferences, using the most recent tracking version.
- Many artifacts seen before have vanished.
- Findable TPC tracks for efficiency are required to have at least 70 TPC hits (other tracks need to have at least 1 TPC hit).
- Cuts are $|\eta| < 0.9$, $p_T > 200$ MeV/c.
- The comparison plot to offline applies in addition to the standard cuts from AliPerformanceRes/AliPerformanceEff.
- All plots use same calibration / error parameterization from Offline also for HLT.
- Comparing pure tracking algorithm.
- dE/dx and related features (x-talk / ion tail) disabled in offline for direct comparison (affects only dE/dx and timing, but not resolution.)