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Name Seed Target track
Initial Pixel triplets Prompt

LowPtQuad Pixel quadruplets Prompt, low p
T

HighPtTriplet Pixel triplets Prompt, high p
T

LowPtTriplet Pixel triplets Prompt, high p
T

DetachedQuad Pixel quadruplets Displaced, low p
T

DetachedTriplet Pixel triplets Displaced, low p
T

PixelPair Pixel pairs Recover high p
T

MixedTriplet Pixel+strip triplets Displaced

PixelLess TIB/TID/TEC strip 
triplets

More displaced

TobTec TOB/TEC ring 5 
strip triplets

Very displaced

JetCoreRegional Pixel+strip pairs Prompt, high p
T
, 

merged pixel clusters

Track reconstruction in the CMS tracker can be 
split into four steps: Hit clustering, track 
seeding, track building and track fitting [1].

1)  Hit  clustering:  Energy 
deposits left by the charged
particles in the  tracker  are
used to determine hit locations.

2) Track  seeding:  Hits  in 
different layers compatible 
to  be  originating  from   a 
single  particle are  formed 
into track seeds.

3) Track building: Seeds are 
extended to include hits from
outer   layers   calculating 
particle propagation using
a Kalman filter.

4) Track  fitting:  A  final  fit 
is performed on the collection 
of hits associated to the  track 
candidate.

After the fitting, the track candidate quality is 
assessed using multivariate analysis techniques 
on the track parameters. Poor quality tracks are 
rejected and good quality candidates are saved 
into a track collection and the hits associated to 
them can be masked from the remaining 
reconstruction.

Reconstructing tracks

Iterative tracking
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Track reconstruction is a computationally 
demanding task. In order to reduce the 
combinatorial complexity of the problem an 
iterative approach has been chosen. The tracks 
that are easiest to find are searched in the early 
iterations and the signals associated to the found 
good quality tracks are masked from the later 
iterations to reduce the computational load.

This allows more resources to be spent on 
finding the difficult tracks. Specialized 
iterations can be used for example to search 
tracks in the densely populated regions inside 
highly  energetic jets. The earlier a track gets 
reconstructed and accepted in the iterations, the 
more resources will be saved. The iterations, the 
seeds used and the targeted track types are 
presented in order they are applied in Table 1.

Track quality estimation

Table 1: The iterations in the order they are applied, 
the seeds used for building the tracks and the targeted 
track types.

An accurate method for estimating the track 
quality is needed both for masking the signals 
that are associated to reconstructed tracks and 
for rejecting fake tracks. These are tracks that 
are falsely reconstructed from unrelated hits or 
tracks that are badly reconstructed with spurious 
hits.

Good performance has been achieved using 
track variables such as the χ² value for the fit, 
the number of hits in the track and track 
displacement as an input to a machine learning 
method that is trained to tell the difference 
between fake and true tracks. So far the method 
used for this classification has been an ensemble 
of Boosted Decision Trees (BDT).

As the different iterations target different 
types of tracks, it has been necessary to have a 
separate classifier prepared for every iteration. 
This unavoidably complicates both the training 
process of the machine learning method and its 
application in the reconstruction pipeline. We 
propose using a Deep Neural Network (DNN) 
as a classifier instead and taking advantage of its 
large capacity to perform the classification with 
just a single classifier.

Figure 1: Using a 
single Deep Neural 
Network classifier 
instead of 11 different 
ensembles of Boosted 
Decision Trees 
simplifies both the 
training and the 
evaluation. 

Deep Neural Network

The initial goal is to find a DNN using the same 
input variables as the current BDTs that would 
reach at least the same level of performance. 
Already with a relatively simple DNN, using 
four hidden dense layers (300, 150, 20, 10 
neurons), the network is able reach and in some 
cases surpass the performance of the BDTs, as 
shown in Figure 1 demonstrating the efficiency 
and fake rate as a function of p

T 
for a sample of 

tt events with pile-up 50.
However making sure that the network is 

able to perform well also on exotic track types 
that are only present in small quantities or not at 
all in the training samples has proven to be 
difficult and is still to be understood. As the 
classifier decides if a reconstructed track is 
stored or rejected, unexpected behavior on rare 
track types can cause decrease in efficiency. 

Figure 2: The DNN classifier is able to outperform the 
BDT classifier both in efficiency and fake rate, on a 
sample of tt events with pile-up 50.   

Future work
● Ensuring  good  performance  on   rare   tracks

- Sample weights, network generalization

● Including  hit  variables  to   the   classification
- Hit type, layer, submodule, fit residual

● Compilation for fast evaluation when deployed
- AOT TensorFlow, C++ TensorFlow

● Hyperparameter optimization
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