
A novel deep neural network classifier
Assessing track quality in the Iterative Track Reconstruction at CMS

Joona Havukainen
On behalf of the CMS Collaboration
joona.havukainen@helsinki.fi

Name Seed Target track
Initial Pixel triplets Prompt

LowPtQuad Pixel quadruplets Prompt, low p
T

HighPtTriplet Pixel triplets Prompt, high p
T

LowPtTriplet Pixel triplets Prompt, high p
T

DetachedQuad Pixel quadruplets Displaced, low p
T

DetachedTriplet Pixel triplets Displaced, low p
T

PixelPair Pixel pairs Recover high p
T

MixedTriplet Pixel+strip triplets Displaced

PixelLess TIB/TID/TEC strip
triplets

More displaced

TobTec TOB/TEC ring 5
strip triplets

Very displaced

JetCoreRegional Pixel+strip pairs Prompt, high p
T
,

merged pixel clusters

Track reconstruction in the CMS tracker can be
split into four steps: Hit clustering, track
seeding, track building and track fitting [1].

1) Hit clustering: Energy
deposits left by the charged
particles in the tracker are
used to determine hit locations.

2) Track seeding: Hits in
different layers compatible
to be originating from a
single particle are formed
into track seeds.

3) Track building: Seeds are
extended to include hits from
outer layers calculating
particle propagation using
a Kalman filter.

4) Track fitting: A final fit
is performed on the collection
of hits associated to the track
candidate.

After the fitting, the track candidate quality is
assessed using multivariate analysis techniques
on the track parameters. Poor quality tracks are
rejected and good quality candidates are saved
into a track collection and the hits associated to
them can be masked from the remaining
reconstruction.

Reconstructing tracks

Iterative tracking

[1] The CMS Collaboration: Description and performance
of track and primary-vertex reconstruction with the CMS
tracker, CMS-TRK-11-001, arXiv:1405.6569v2, 2014

Track reconstruction is a computationally
demanding task. In order to reduce the
combinatorial complexity of the problem an
iterative approach has been chosen. The tracks
that are easiest to find are searched in the early
iterations and the signals associated to the found
good quality tracks are masked from the later
iterations to reduce the computational load.

This allows more resources to be spent on
finding the difficult tracks. Specialized
iterations can be used for example to search
tracks in the densely populated regions inside
highly energetic jets. The earlier a track gets
reconstructed and accepted in the iterations, the
more resources will be saved. The iterations, the
seeds used and the targeted track types are
presented in order they are applied in Table 1.

Track quality estimation

Table 1: The iterations in the order they are applied,
the seeds used for building the tracks and the targeted
track types.

An accurate method for estimating the track
quality is needed both for masking the signals
that are associated to reconstructed tracks and
for rejecting fake tracks. These are tracks that
are falsely reconstructed from unrelated hits or
tracks that are badly reconstructed with spurious
hits.

Good performance has been achieved using
track variables such as the χ² value for the fit,
the number of hits in the track and track
displacement as an input to a machine learning
method that is trained to tell the difference
between fake and true tracks. So far the method
used for this classification has been an ensemble
of Boosted Decision Trees (BDT).

As the different iterations target different
types of tracks, it has been necessary to have a
separate classifier prepared for every iteration.
This unavoidably complicates both the training
process of the machine learning method and its
application in the reconstruction pipeline. We
propose using a Deep Neural Network (DNN)
as a classifier instead and taking advantage of its
large capacity to perform the classification with
just a single classifier.

Figure 1: Using a
single Deep Neural
Network classifier
instead of 11 different
ensembles of Boosted
Decision Trees
simplifies both the
training and the
evaluation.

Deep Neural Network

The initial goal is to find a DNN using the same
input variables as the current BDTs that would
reach at least the same level of performance.
Already with a relatively simple DNN, using
four hidden dense layers (300, 150, 20, 10
neurons), the network is able reach and in some
cases surpass the performance of the BDTs, as
shown in Figure 1 demonstrating the efficiency
and fake rate as a function of p

T
for a sample of

tt events with pile-up 50.
However making sure that the network is

able to perform well also on exotic track types
that are only present in small quantities or not at
all in the training samples has proven to be
difficult and is still to be understood. As the
classifier decides if a reconstructed track is
stored or rejected, unexpected behavior on rare
track types can cause decrease in efficiency.

Figure 2: The DNN classifier is able to outperform the
BDT classifier both in efficiency and fake rate, on a
sample of tt events with pile-up 50.

Future work
● Ensuring good performance on rare tracks

- Sample weights, network generalization

● Including hit variables to the classification
- Hit type, layer, submodule, fit residual

● Compilation for fast evaluation when deployed
- AOT TensorFlow, C++ TensorFlow

● Hyperparameter optimization

	Slide 1

