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This opens up a new era of weak supervision in 
(high-energy) physics to make the most of our data 
and maybe even learn something new about nature!
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Loss and activation 
function matter for LLP!

sample 1 has f1 signal & 
sample 2 has 1-f1 signal

Learning when you know (almost) nothing
Techniques for machine learning directly from (unlabeled) data
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Train using class 
proportions.  

Work “on average”

Learning from 
Label Proportions

two classes. In the traditional classification paradigm of fully supervised training, the function ffull is
built by minimizing a loss function like the following:

ffull = argmin
f

0:Rn!{0,1}
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i

)� t

i

) , (2.1)

where N is the number of labeled data available for training, ` is a loss function with lim
x!0 `(x) = 0,

and t

i

is the true label of example i. A common loss function is the squared error. In order to
provide flexibility and stability, one often modifies the original problem to take f : Rn ! [0, 1] and the
output is interpreted as a probability for an event to be in class 0 or 1. The ideal classifier that one
tries to approximate with Eq. 2.5 is based on the likelihood ratio p(~x|0)/p(~x|1), where p(~x|i) is the
n-dimensional probability density for the feature vector ~x for the class i 2 {0, 1}. Weakly supervised

classification is a new paradigm in which instead of knowing the t
i

, all that is known is the proportion
of events in either class: y =

P
i

t

i

/N . Thus, the weakly supervised fweak is given by

fweak = argmin
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The argument of Eq. 2.2 is non-convex, with many minima. In particular, the trivial solution f

0(x) =
y results in a loss of zero. However, using multiple batches of data with di↵erent proportions y

j

is su�cient to collapse the solution space, so long as the distribution p(~x|i; j) = p(~x|i), i.e. the
distribution of the discriminating features for a particular class is the same in every batch j. To build
intuition for why there is any hope to solve this problem, consider a case where there are two batches
A and B with proportions y

A

and y

B

. Consider an n-dimensional histogram where the i

th dimension
captures a discretized version of the i

th discriminating feature. If the i

th dimension has m
i

bins, then
the total number of bins in the histogram is M =

P
n

i=1 mi

. One can always rearrange bins so that
instead of an n-dimensional histogram with m

i

bins in the i

th dimension, there is a one-dimensional
histogram with M bins. As visualizing high dimensional histograms can be cumbersome, let h

A

be
one-dimensional histograms with M bins for the batch A and h

B

be the corresponding histogram for
batch B. Then, for each bin i, one can write

h

A,i

= y

A

h1,i + (1� y

A

)h0,i (2.3)

h

B,i

= y

B

h1,i + (1� y

B

)h0,i, (2.4)

where h
X,i

is the content of the ith bin of the histogram h

X

. Except for contrived scenarios, Eq. 2.3 will
have a unique solution for h0,i and h1,i, which are discretized versions of the probability densities p(~x|0)
and p(~x|1). One can then form an (approximately) optimal classifier from the ratio of histograms with
bin contents h0,i/h1,i. If the number of dimensions is large, one can add a further step to use machine
learning to approximate the optimal classifier from h0,i and h1,i. As a result, the problem is completely
solvable. Weakly supervised training combines the classification step with the first step and does so
without binning. Solving Eq. 2.3 ‘by-hand’ is intractable when n is relatively large or the number
of examples is relatively small. It is also complicated when there are more than two batches (over-
constrained). These challenges are all naturally handled by the all-in-one machine learning approach
of weakly supervised classification, as illustrated below.
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f
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) pB
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2

) pB
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)
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, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f
1

> f
2

, since

@LS/B
LM1/M2

= (f
1

� f
2

)/(f
2

LS/B � f
2

+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Train directly on data 
using mixed samples

CWoLa
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Usual paradigm: train in simulation, test on data.

Classification 
Without Labels

LoLiProp

Eur. Phys. J. C 74 (2014) 3023

E. Metodiev, BPN, J. Thaler, JHEP 10 (2017) 51

Solution: learn directly from (unlabeled) data.  Two paradigms:

5

Figure 3: This figure shows the W-jet image di↵erences
between the default PYTHIA shower and the alternate VINCIA

shower in PYTHIA (top left), the default SHERPA shower (top
right), the default HERWIG angular shower (bottom left) and
the HERWIG dipole shower (bottom right). The plots have been
individually normalised.

To gain an understanding of the systematic uncer-
tainties in using networks trained on simulated data,
we study the behaviour of networks across a variety of
di↵erent generators and parton showers which all provide
an adequate description of current LHC data. We assume
that given a number of di↵erent ROC curves derived from
di↵erent generators and parton showers, the envelope of
these curves provides an approximate uncertainty band
associated with training the network on simulated, rather
than real, data.

Recently, Ref. [48] has studied parton shower uncer-
tainties in HERWIG 7. They divide the uncertainties into
a number of classes: numerical, parametric, algorithmic,
perturbative and phenomenological. Numerical uncer-
tainties can be decreased by increasing the number of
events, while parametric uncertainties are those external
to the MC generator: masses, couplings, PDFs and
so forth. The focus of our work in this section is on
algorithmic uncertainties, those due to di↵erent choices
of parton shower algorithm. The authors of Ref. [48]
focus on perturbative and phenomenological uncertain-
ties, which are from truncation of expansion series and
parameters deriving from non-perturbative models. Our
work is more in the spirit of the ‘Towards parton shower
variations’ contribution to the 2015 SM Les Houches
Proceedings [49]. Previous studies also exist within the
HERWIG framework on the implications of MC uncer-
tainties on jet substructure in the context of Higgs
searches [50].

We generate background and signal events with

three of the most widely used MC generators:
PYTHIA 8.219 [41], SHERPA 2.0 [51, 52] and HERWIG 7.0 [53,
54]. For PYTHIA 8 we study both the default shower
and the VINCIA shower [55, 56], and for HERWIG we
include both the default (angular ordered) and dipole
showers [57, 58], giving us five di↵erent parton shower
models to study.
The default HERWIG shower (known as QTilde) is based

on 1 ! 2 splittings using the DGLAP equations, with
an angular ordering criterion [59]. The SHERPA shower is
based on a Catani-Seymour dipole formalism [60]. In this
case one particle of the dipole is the emitter which under-
goes the splitting, while the other is a spectator which
compensates for the recoil from the splitting and ensures
that all particles remain on their mass-shells throughout
the shower, leading to easier integration with matching
and merging techniques. The default shower in PYTHIA 8
is also a dipole style shower [61], ordered in transverse
momentum.
While parton showers have traditionally been based

upon partonic DGLAP splitting functions, another possi-
bility is to consider colour-connected parton pairs which
undergo 2 ! 3 branchings (note that this is distinct
from Catani-Seymour dipoles used in SHERPA, where one
parton is still an emitter, and the other recoils). In
these so-called antenna showers, the 2-parton antenna
is described with a single radiation kernel. This has the
advantage, for instance, of explicitly including both the
soft and collinear limits. We use the recently released
VINCIA [55, 56] plug-in for PYTHIA 8 as a representative
antenna shower.
These event generators also provide di↵erent treat-

ments of the soft radiation from the underlying event
which accompanies each hard partonic scattering. They
also possess di↵erent implementations of the parton-to-
hadron fragmentation process being based either around
cluster fragmentation ideas (HERWIG and SHERPA) or the
Lund string model (PYTHIA), giving us a wide range of
QCD-related e↵ects to probe. To incorporate detector
e↵ects such as smearing we pass all events through
the Delphes 3 detector simulator [42]. In the studies
presented here, our baseline shower is PYTHIA 8 with its
default settings.
We construct average jet images for all five di↵erent

generators and showers under investigation, and then
subtract the default PYTHIA average jet image in order
to see the di↵erences in the average radiation patterns.
The results are shown in Fig. 3 for the W-jet signal. We
have normalised the intensity di↵erences of the pixels so
that red indicates a region of excess and blue a deficit
relative to the PYTHIA default. While the VINCIA is
roughly similar to the PYTHIA default, the SHERPA and
HERWIG dipole showers exhibit more intense radiation in
the resolved subjets and a substantial deficit in the region
between the subjets. The HERWIG angular shower shows
the opposite, with less radiation in the subjet cores and
more di↵use radiatioon. QCD radiation exhibits similar
features.

Especially important 
for deep learning 

using subtle features 
→ hard to model!

W boson radiation 
pattern - same physics, 

different simulators!

If data and simulation differ, this is sub-optimal!

Simulation Data
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