Implementation and performance of the ATLAS pixel clustering neural networks

Louis-Guillaume Gagnon, PhD student, Université de Montréal On behalf of the ATLAS collaboration

> Connecting The Dots 2018 University of Washington, Seattle

Fonds de recherche

The ATLAS inner detector

- High performance tracker with 3 subdetectors:
 - TRT: straw-tube gaseous detector
 - SCT: silicon strips detector
 - Pixel+IBL: silicon pixel detector

► Pixel+IBL:

- Up to 4 very precise measurements per track
- Crucial for optimal tracking & vertexing performance

Track finding in ATLAS

- Detector measures space-points (3D coordinates of hits)
- Track seeds: sets of 3 space-points passing p_T, impact parameter cuts
- Use Kalman filter to produce track candidates
 - 1. Get track parameters from current candidate
 - 2. Compute probability distribution over position of hit on next layer
 - 3. Use compatible space-points to update/create track candidate

Track finding: example

• Sometimes easy . . . ($\sqrt{s} = 900$ GeV, $\langle \mu \rangle \approx 0.05$)

Track finding: example

• . . . sometimes difficult . . . ($\sqrt{s} = 13$ TeV, $\langle \mu
angle pprox 1$)

Track finding: example

 \blacktriangleright sometimes crazy! ($\sqrt{s}=13$ TeV, $\langle\mu
anglepprox$ 10)

Charge clusters

- ► This picture of 3D space-points processed by a Kalman filter is simplified
- In reality, energy deposits in the tracker are not point-like!
 - Sensor elements have non-infinitesimal sizes
 - Charge can be deposited in many pixels (Charge diffusion, drift due to B-field, δ-rays, ...)
- ▶ In dense environments (e.g. core of high- p_T jets), charge clusters can merge

In ATLAS, use 3 sets of neural networks to identify clusters originating from > 1 particle and measure the hit positions and associated uncertainties

Particle multiplicity estimation

- Inputs:
 - 7x7 discretized charge matrix
 - Pixel pitches in longitudinal direction
 - Angles of incidence of track candidate
 - Detector region
- Outputs length-3 probability vector:
 - Pr(1-particle)
 - Pr(2-particle)
 - ▶ Pr(≥ 3-particle)
- ► Class assigned based on cuts on Pr(2-particle) and Pr(≥ 3-particle)
- When classified as > 1-particle, remove ambiguity solving penalty for shared hits
- Trained on 12 million clusters from high-p_T dijet sample

Shaded: 1-particle classification region

Particle multiplicity estimation

► 3-particle vs 1-particle

▶ WP defined by cutting on 2 probs and doesn't correspond to point on pairwise ROC curves
 ▶ Overall Pr(2 or 3 | 1-particle): IBL/Barrel ≈ 4%, Endcap ≈ 7%

- Three networks according to multiplicity (1, 2, or 3 particles)
- Inputs: Same as multiplicity network
- ► Outputs: (1/2/3) 2D position vectors
 - Unit: Number of pixel lengths from charge centroid of cluster
 - Integer part: identify containing pixel
 - Fractional part: offset within the pixel
- Trained on 12 million clusters from high-p_T dijet sample

► Colors: IBL, Barrel, Endcap

Hit position estimation

- Six networks according to multiplicity (1, 2, or 3 particles) and direction (transverse/longitudinal)
- Inputs: Same as multiplicity network + hit position estimation
- Uncertainty not known beforehand: unsupervised learning problem
- Outputs: (1/2/3) binned probability distributions over residual
- Point estimate of uncertainty: rms of distribution
- Trained on 12 million clusters from high-p_T dijet sample

pull \equiv residual / uncertainty

Uncertainty estimation: example

► Transverse direction

Hyperparameter	Number network	Position networks	Error networks
Structure	(60)-25-20-(3)	(60)-40-20-(2/4/6)	(62/64/66)-15-10-(30/50/60)
Hidden layers activation	Sigmoid	Sigmoid	Sigmoid
Output activation	Sigmoid	Linear	Sigmoid
Learning rate	0.08	0.04	0.3
L2 regularized	1e-7	1e-7	1e-6
Momentum	0.4	0.3	0.7
Batch size	60	30	50
Loss function	categorical crossentropy	mean squared error	categorical crossentropy

Small networks: good tradeoff between performance and runtime

Future directions

Inner detector will be replaced during ATLAS phase-II upgrade

- Different geometry and pixel depth/pitches
- Opportunity to optimize and re-think the method!
- See Felix Cormier's talk earlier today: "Tracking in Dense Environments for the HL-LHC ATLAS Detector"
- Consider different network architectures
 - Idea: Mixture density networks
 - Output priors C_i , means μ_i and variances σ_i^2 of component of gaussian mixture.
 - Likelihood of a cluster:

$$P(\textit{cluster}) = \sum_{i} C_i \mathcal{N}(\textit{true position}; \mu_i, \sigma_i^2)$$

- After training, use μ_i and σ_i^2 with highest C_i
- Obtain estimation of position with uncertainty with single network instead of 3

Merci!

For more details: <u>ATL-PHYS-PUB-2018-002</u>

BACKUP

Particle multiplicity scores

► 1-particle clusters

► 2-particle clusters

Particle multiplicity ROCs

Particle multiplicity ROCs

Cluster size in local X direction

Cluster size in local Y direction

Cluster size in local Y direction

► Transverse direction

► Transverse direction

► Transverse direction

Cluster size in local X direction

► Transverse direction

Cluster size in local Y direction