20-22 MARCH 2018

UNIVERSITY OF WASHINGTON, SEATTLE, USA

Expected Performance of the ATLAS Inner Tracker at the High-Luminosity LHC

Noemi Calace – noemi.calace@cern.ch On behalf of the ATLAS Collaboration

CONNECTING THE DOTS 2018 4TH INTERNATIONAL WORKSHOP

The ATLAS Phase-II Inner Tracker

ITk (Inner Tracker) is a full upgrade of the ATLAS Inner Detector as part of the Phase-2 upgrade

 \rightarrow consists of a new pixel and strip detectors, "all-silicon" detector

 \rightarrow Designed to operate successfully under HL-LHC operating conditions corresponding to:

- Levelled peak luminosities up to $7.5\,\cdot\,10^{34}~cm^{\text{-2}}~s^{\text{-1}}$
- 25 ns bunch spacing
- Mean number of interactions per bunch crossing up to 200
- Integrated luminosity up to 4000 fb⁻¹
- 14 TeV energy in the centre of mass

ATLAS COLLABORATION

- Extended tracking acceptance: up to $|\eta| \sim 4$
 - \rightarrow concerns mostly the pixel detector
 - $\circ~$ Improved sensitivity and acceptance in VBS, VBF Higgs studies, bbH, H \rightarrow 4l, etc.
 - \circ $\$ Pile-up jet suppression \rightarrow Improved MET resolution
 - Better identification of the hard scatter vertex
 - Improved identification or suppression of b-jets
 - Increased range for lepton reconstruction
- Important milestones:
 - TDR for the ATLAS ITk Strip Detector
 - TDR for the ATLAS ITk Pixel Detector in finalising process: submitted to LHCC

ATLAS COLLABORATION

• ITk Inclined Duals Pixel Layout

- Inclined modules reduces the material traversed by particles and improves tracking performance
 → multiple hits/layer to provide robustness
- Less silicon surface than a traditional barrel needed to cover the same detector volume
 - **End-cap rings** replacing traditional disks to **improve the hit coverage** with less silicon surface

• ITk Strip Layout

- Four strip **barrel layers** and six **end-cap** discs:
- Covers up to $|\eta|<2.6$
- ITk Pixel Layout
 - Five pixel barrel layers and a ring end-cap system
 - \rightarrow 2 pixel system designs have been proposed

→ Nora Pettersson @CTD2017

Material Budget of the ITk

- Material distribution of X₀ versus η based on the detailed modelling of the Pixel and Strip Detectors → < 1 X₀ for the active tracker volume
 - \rightarrow < 1.5 $\rm X_{_0}$ before the calorimeter including the moderator

For comparison the same distribution is shown for the current ATLAS Inner Detector

ATLAS COLLABORATION

UNIVERSITÉ DE GENÈVE

Number of Hits

- Provide hermetic coverage with a minimum of 9 hits for primaries with $p_T > 1$ GeV and $z_{vertex} = [-150, 150]$ mm
 - \rightarrow Strip+Pixel provide a total of **13 hits for** $|\eta| < 2.6$
 - **11 hits** in the strip barrel/end-cap transition $(|\eta| \sim 1.2)$ 0
 - \rightarrow The **pixel end-cap system** is designed for of at least **9 hits from** $|\eta| > 2.7$ (except very close to $|\eta| \sim 4$)

Track Reconstruction: Cluster Formation

- The first step of event reconstruction is the **formation of clusters from individual channels** with a hit from Strip and Pixel detectors
 - Two algorithms to determine position and uncertainty of particle producing the cluster
 - \rightarrow **Digital clustering**: geometrical centre of cluster
 - \rightarrow **Analog clustering**: use charge information to improve position determination

64

Evaluation of Computing Requirements

- Phase-II environment is challenging in terms of CPU time needed for reconstruction given the extremely high pile-up
 - Cost driver for computing for Phase-2, in particular for HLT farm and Tier-0 0
 - CPU performance taken into account in the layout optimisation process 0
 - e.g.: avoid long gaps between hits or problematic material concentrations

ATLAS COLLABORATION

UNIVERSITÉ DE GENÈVE

Physics Tracking Efficiency

- The **physics tracking efficiency** is one of the most important performance criteria for a tracking detector
 - Fraction of prompt particles matched, i.e. sharing at least 50% of the hits, with truth tracks passing a track quality selection:

 $\epsilon_{\text{track}} = \frac{N_{\text{reco}} \,(\text{selected}, \text{ matched})}{N_{\text{truth}} \,(\text{selected})}$

- Muon reconstruction efficiency close to 100% even at $\langle \mu \rangle{=}200$
- Efficiency to reconstruct pions and electrons limited by interactions of the particles with the detector material
 - ITk layout has significantly less material wrt ID
 - \rightarrow significant reduction in the fraction of particles lost through interactions and radiation effects

UNIVERSITÉ DE GENÈVE

ATLAS COLLABORATION

Wednesday, 21 March 2018

Rate of fake tracks

• The **rate of fake tracks** is another important performance criterion for a tracking detector

- Excellent improvement over Run-2 still being maintained even at high pile-up
- Reduced material and increased hit counts help us again in the forward region
- N_{reco}/N_{truth} used as a another measure of the rate
 of fake or mis-reconstructed tracks
 - stable to within 1% across wide range of pile-up

11

Track Parameter Resolutions

- Excellent capability to resolve the position and momentum
- Transverse impact parameter (IP) resolution d₀ similar to current ID
 - Run-2 performance better at very high p_{τ} due to analogue clustering (while ITk is using digital!!)
- Significant improvements in the longitudinal IP resolution z₀
 - \circ $\,$ Reduction of pixel pitches from 250 and 400 μm to 50 μm for ITk $\,$
- **Momentum resolution** substantially **improved** by high precision measurements along the full track length provided by the full silicon tracker

ATLAS COLLABORATION

Track Parameter Resolutions

- As seen, analogue clustering significantly improves intrinsic resolution of the cluster position
 - Using $25 \times 100 \ \mu m^2$ pixels the local-X benefits most
 - $^\circ$ Both 50x50 μm^2 and 25x100 μm^2 with analog clustering
 - \rightarrow d_{_0} resolution is improved by a ~ factor 2 at the cost of ~35% loss in z_{_0} resolution

Poster: Salvador Marti I Garcia

Alignment Studies

- Results presented so far assume perfect detector alignment
 - Misalignments degrade the measurement accuracy
 - \rightarrow The ATLAS ID alignment procedure is an iterative track alignment using a multidimensional global- χ^2 minimisation
 - During Run-2, a dedicated alignment procedure to correct for short-term detector movements within a run of LHC

→ For ITk, the **effect** of both **global deformations and misplacements** of the detector **on impact parameter resolutions** has been studied

 \rightarrow **10 µm global displacement** in x and y lead to a **loss of resolution** by a factor 1.8-2.0 in d₀ and up to a factor 2.8 in z₀ at $|\eta|=2.2$ (we can tolerate 3-5 µm local shifts)

The alignment procedure can completely recover the nominal resolution!

Wednesday, 21 March 2018

Noemi Calace - Connecting The Dots 2018

Robustness Studies

Poster: Natasha Lee Woods ITK-2018-003

- Two different effects have been studied
 - Component failures, e.g. inactive modules
 - Known and described in the conditions database of the detector
 - **Detector inefficiencies**, in particular due to irradiation that affects single channels
 - Can not be flagged in reconstruction

 \rightarrow un-avoidable increase in pixel holes $\mbox{especially}$ where smaller clusters are expected

Results for the most pessimistic scenario:

 \rightarrow 15% inactive modules + 3% inactive pixel channels + 1% inactive strip channels

 \rightarrow Reconstruction not re-tuned to the percentage of inactive modules

Vertexing Studies

- Find and determine the position of hard-scatter and pile-up interaction vertices
 - Current ATLAS Run-2 iterative vertexing and its working point not adequate for Phase-2
 - Phase-2 algorithm fits multiple vertices simultaneously → fit is aware about the tracks weight to other vertices

- Number of primary vertices as a function of pile-up
 - At constant efficiency, **linear dependency is expected**
 - **Deviation** from linearity can be sign of **vertex merging** effects
 - Run-2 vertex finding SW provides lower pile-up vertex efficiency

Allows to control pile-up contributions at cost of primary track efficiency in forward

• this is the realm of the High Granularity Timing Detector (HGTD)

ATLAS COLLABORATION

- HS primary vertex is identified based on Σp_{τ}^2 of tracks associated to vertex
 - Good $t\bar{t}$ identification efficiency vs pile-up density, 0 lower for $H \rightarrow ZZ \rightarrow \nu \nu \nu \nu$
 - Rate of true primary vertex with the highest true Σp_{τ}^{2}
 - \rightarrow New strategy to find the HS vertex is needed
 - e.g. analysis with no central high- p_{τ} tracks can make use of tracks from forward jets 0

Excellent vertexing performance

small pile-up dependency

Efficiency

Vertex Selection

0.9

0.8

0.7

0.6E

0.5^L

 \rightarrow Vertex reconstruction efficiency close to 100% with

 \rightarrow few percent vertex reconstruction inefficiency and

Preliminary

0.5

p₊ > 1 GeV, √s = 14 TeV

ATLAS Simulation _____ Truth - tt, $\langle \mu \rangle = 200$

1.5

—— ITk - tt. ⟨u⟩ =

- Run-2 - $t\bar{t}$, $\langle \mu \rangle = 60$

 \rightarrow ITk - VBFH \rightarrow vvvv, $\langle \mu \rangle = 200$

- - Truth - VBFH \rightarrow vvvv, $\langle \mu \rangle$ = 200

- Run-2 - VBFH $\rightarrow vvvv$, $\langle \mu \rangle = 60$

2.5

Local PU Density [Vertices / mm]

2

no significant local pile-up dependency

 $H \rightarrow ZZ \rightarrow vvvv$ with 2 forward jets

tt events

0

0

3.5

3

b-Tagging Performance

- Improved IP precision directly translates into excellent b-tagging performance
 - \rightarrow Excellent light and charm rejection

- MV2 multi-variant tagger
 o impact parameter, secondary vertex and kinematic information
 → ITk outperforms the current detector and
 - significantly extents b-tagging **η** coverage
 - HGTD will improve this further

- All in presence of Phase-2 pile-up with measurement resolution with digital clustering
 - \rightarrow Ongoing studies to explore full analogue resolution

ATLAS COLLABORATION

UNIVERSITÉ DE GENÈVE

Pile-Up Jet Rejection and Missing Transverse Energy

- R_{pT} technique to reject pile-up jets
 - $^\circ$ Excellent efficiencies up to $\eta{\sim}3.8$ for rejection of 50
 - HTGD will add to forward performance

momentum of tracks within a jet associated with the primary vertex

- Missing Transverse Energy
 - ITk improves jet term rejecting pile-up jets
 - Improvements in track soft term using forward tracks is marginal

Noemi Calace - Connecting The Dots 2018

UNIVERSITÉ DE GENÈVE

ATLAS COLLABORATION

Lepton Reconstruction

- Good τ reconstruction at Phase-2
 - "preliminary" tuning of MVA identification
- Better ITk momentum resolution improves combined muon momentum measurement
- Track based isolation stable against increasing pile-up for $p_{_{\rm T}}>$ 50 GeV

Reco Tau h

Conclusions

- Complete replacement of the Inner Detector planned as part of the ATLAS Phase-2 Upgrade Program
- Detailed and accurate ITk simulation to study HL-LHC pile-up scenario
- Reconstruction developed and updated specifically for ITk
 - Improved tracking performance and extended coverage!
 - $\circ~$ Obtaining similar or better performance than the current ATLAS ID in very dense pile-up environments of up to $\langle\mu\rangle{=}200$
 - Excellent CPU performance for ITk at $\langle \mu \rangle {=}200$
 - Extremely stable efficiency and fake rate with pile-up
 - Excellent vertexing performance also for more complicated signals
 - More results on Tracking In Dense Environment in the next talk
 - Comparable or improved performance to Run 2 detector despite challenging highluminosity conditions
 - \rightarrow Studies are still ongoing to finalise the layout to address concerns from LHCC

Thank you

Noemi Calace - Connecting The Dots 2018

Extra Slides

Solution and the solution of t

Noemi Calace - Connecting The Dots 2018

LHC / HL-LHC Plan

LHC HL-LHC Run 3 Run 4 - 5... Run 1 Run 2 EYETS 14 TeV 14 TeV LS1 LS2 LS3 13-14 TeV energy splice consolidation injector upgrade cryo Point 4 Civil Eng. P1-P5 5 to 7 x cryolimit interaction 8 TeV nominal button collimators **HL-LHC** installation 7 TeV luminosity **R2E project** regions 2012 2014 2016 2017 2025 2026 2011 2013 2015 2018 2019 2020 2021 2022 2023 2024 2037 radiation damage 2 x nominal luminosity experiment experiment upgrade experiment upgrade 75% nominal luminosity beam pipes phase 1 nominal phase 2 luminosity integrated luminosity 30 fb⁻¹ 150 fb⁻¹ 300 fb⁻¹ 3000 fb⁻¹

The ATLAS Phase-II Inner Tracker

\rightarrow More stringent requirements to cope with the new environment

- $\circ~\leq 0.1\%$ occupancy in the pixel layers and $\leq 1\%$ occupancy in the strip layers
- Radiation tolerance: possibility to extract and replace inner parts of the pixel detector if needed
- \rightarrow Reduce the amount of material in the tracking volume
 - The tracker material is a major limitation for the overall performance
 - Interactions in tracker material limits tracking performance
 - Material in front of calorimeter affects jet and electron/photon performance
 - Thinner silicon sensors, long stave concept, innovative ring system

\rightarrow Pileup Robustness

• Stable performance with respect to increasing pileup

\rightarrow System Redundancy

• Robustness against limited detector defects

Starting from the Lol...

The ITk layout design process started from the LoI proposal in 2013

- Pixel Detector:
 - \rightarrow 4 pixel layers + 6 disks
 - Two inner pixel barrel layers removable
- Strip Detector:
 - \rightarrow 5 barrel layers + stubs + 7 disks
 - Stubs are inserted to maintain hermeticity and provide good momentum resolution in the barrel-endcap transition region
 - Barrel layers and endcap disks have back-to-back small stereo-angle sensors
 - Reduced strip length is used in the innermost layers to limit occupancy

... towards the LoI-Very Forward Layout

Extended tracking acceptance: up to $|\eta| \sim 4$

 \rightarrow concerns mostly the pixel detector

- Used for studies up to $|\eta|{\sim}4$ and starting point for optimisation
- Hermetic for primary vertices within ±150 mm around the origin and tracking performance not to fall down just beyond this region, up to 200 mm

All the studies on Lol and Lol-VF have been the enormously important to establish the starting point for the layout definition

ATLAS Lol Layout Design Consideration

- Length of inner barrel layer is given to provide coverage up to $|\eta|{\sim}2.7$
- Length of outer barrel layers is mainly given by construction constraints and costs
- For both sub-detectors, fixed the position of the first disk, the radius of the last layer is determined in order to provide hermeticity
- The next disks are added taking into account the fall-off of the layers

The radius of the innermost pixel layer is chosen to be as close as possible to the beam pipe

Inverse- p_T resolution using resolution model, measured as a function of $|\eta|$ for the Lol layout, and comparison with the existing ATLAS experiment

 \rightarrow Letter of Intent (LoI) Layout – ATL-UPGRADE-PUB-2012-004

Noemi Calace - Connecting The Dots 2018

Wednesday, 21 March 2018

More on the ATLAS Lol Layout Design Consideration

- The services, the material budget, the placement of patch panels and manifolds, and the service routing, affect performance
- Many service layouts have been considered to study the effect on performance, e.g. impact parameter and momentum resolution, in the tracking volume.

Possible service layouts for the outer pixel layers

→ Letter of Intent (LoI) Layout - ATL-UPGRADE-PUB-2012-004 Noemi Calace - Connecting The Dots 2018

Strip Detector Layout

- 4 Pixel + 5 Strip \rightarrow 5 Pixel + 4 Strip
 - Goal: e.g. do better in jet cores
 - Many options studied
- Longer staves in strip barrel: $13 \rightarrow 14$ modules
- Removed stubs
 - \rightarrow reduce complexity of engineering
 - Region of best momentum resolution extends to $|\eta| = 1.1$
- Longer Strip barrel allows as well to go from 7 to 6 strip endcap disks without loosing momentum resolution

Pixel Rings

- Rings instead of disks in the pixel endcap region
 - Allows to save silicon surface
 - Services are routed on the support structure
 - Very peculiar pattern to provide constant number of hits versus η
 - $\label{eq:large-} \begin{array}{l} & \mbox{Large-}|\eta| \mbox{ region entirely in the pixel} \\ & \mbox{volume} \rightarrow \mbox{increased the number of} \\ & \mbox{rings at very high } |\eta| \end{array}$

 \rightarrow Its optimization strongly correlated with the barrel layout choice

\rightarrow Traditional disk system

\rightarrow Optimised rings with 1 hits per ring

The Inclined Layout Concept

\rightarrow The Inclined Layout provides many hits at large $|\eta|$ close to the beam spot

• With tilted sensors in the high $|\eta|$ region we expect several hits per layer (tracklets) and less material crossed given the low incidence angle

\rightarrow PROS

- Pushing barrel services and supports out in z
- Minimization of the traversed material inclining the module
- Allows track finding with several hits close to the interaction point
- For outer barrel layers provides a strong reduction of sensor surface
- Smaller clusters

$\rightarrow \text{CONS}$

- Required additional design and qualification
 - Thermal management
 - Assembly procedure
- Smaller clusters
 - \rightarrow 1-pixel clusters resolution can't be better than pitch/ $\!\!\!/12$

ATLAS COLLABORATION

UNIVERSITÉ DE GENÈVE

Material Budget Comparison

Inclined Stave Design and Prototyping

\rightarrow Support structure design bound to layout choice

- For the inclined layout two designs have been proposed: Alpine and SLIM
 - \rightarrow Process to merge the two efforts ongoing

Alpine

- T. Todorov^{\dagger} pioneer of the "inclined" idea
- Two types of modules: barrel and inclined
- carbon foam + carbon fibre "IBL-like" stave design

SLIM: Stiff Longeron for ITk Modules

- Two types of modules: barrel and inclined
- Inspired from ALICE: common structure ("Longeron") supporting two layers of modules

The ATLAS ITk Strip Layout

• Barrel:

- 4 double-sided layers
- Stereo angle: +/- 26 mrad
- Endcap:
 - 6 discs: double-sided petals
 - \rightarrow 6 different types of sensors in radius
 - Sensor's irregular shape
 - \rightarrow two tilted straight edges: +/- 20 mrad stereo angle built in
 - \rightarrow two circular edges: uniform gap between the sensors
 - \rightarrow Strips are pointing to the strip focus (not the beampipe)

Track Reconstruction

- Designed for reconstruction primary with $p_{\tau}\!>1~GeV$
 - **n**-dependent requirements needed because of limited field in very forward region
 - Worse $\boldsymbol{p}_{\scriptscriptstyle T}$ resolution in the forward region

Requirement	Pseudorapidity Interval		
	η <2.0	$2.0 < \eta < 2.6$	$2.6 < \eta < 4.0$
Pixel+Strip hits	≥ 9	≥ 8	≥ 7
Pixel hits	≥ 1	≥ 1	≥ 1
Holes	< 2	< 2	< 2
Strip Double holes	≤ 1	≤ 1	≤ 1
Pixel holes	< 2	< 2	< 2
Strip holes	< 2	< 2	< 2
р _т [MeV]	> 900	> 400	> 400
d ₀ [mm]	≤ 2	≤ 2	≤ 10
z ₀ [cm]	≤ 20	≤ 20	≤ 20

Inclined-Dual Pixel Layout

- The Pixel detector consists of **five barrel layers** with **inclined sensors** starting from $|\eta| > 1.4$
 - Reduces the material traverse by particles ^{the} and improves tracking performance (and energy measurements of the calorimeter)
 - Less silicon surface than a traditional barrel needed to cover the same detector volume
 - End-cap rings replacing traditional disks to improve the coverage and at cost of less silicon surface

Three types of sensor: single read-out chip modules (inclined layer 0), duals (flat layer 0 and inclined layers 2 to 4) and quads (elsewhere)

Two pixel pitches still under consideration $50x50 \ \mu m^2$ or $25x100 \ \mu m^2$ (current ID using $50x250(400) \ \mu m^2$)

 \rightarrow The results presented are using 50x50 μ m² – unless clearly stated

Physics Tracking Efficiency

- The **physics tracking efficiency** is one of the most important performance criteria for a tracking detector
 - Defined as the fraction of prompt particles which are associated with tracks passing a track quality selection:

Physics Tracking Efficiency

 Efficiency to reconstruct pions and electrons limited by interactions of the particles with the detector material

Robustness Studies

Results for the most pessimistic scenario:

- \rightarrow 15% inactive modules + 3% inactive pixel channels + 1% inactive strip channels
- \rightarrow Reconstruction not re-tuned to the percentage of inactive modules

Vertexing Studies

- Find and determine the position of hard-scatter and pile-up interaction vertices
 - Current ATLAS Run-2 iterative vertexing and its working point not adequate for Phase-2

Vertex Reconstruction

r/z PV resolution vs true local pile-up density in \pm 2 mm around the primary interaction

- ITk vertexing shows nearly **no local pile-up dependency** despite increased vertex merging probability
- Run-2 resolution degrades at high pile-up densities

