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Abstract.

The design of next-generation particle accelerators evolves to higher and higher
luminosities, as seen in the HL-LHC upgrade and the plans for the Future Cir-
cular Collider (FCC). Writing track reconstruction software that can cope in
these high-pileup scenarios is challenging due to the inherent complexity of
current algorithmic approaches. In this contribution we present TrickTrack, a
track reconstruction toolkit based on the cellular automaton-based algorithm
used for track seeding in the CMS experiment. It is a concurrency-friendly
implementation of an algorithm for pattern recognition problems, and tries to
remain general enough to be of use in most tracking detectors. The performance
of TrickTrack in the FCC-hh design study, which features pileup rates of 1000
interactions per bunch crossing and a high-occupancy environment for tracking,
is presented as the first use case beyond CMS.

1 Introduction

Particle physics experiments using tracking detectors to measure particle properties are faced
with the combinatorial task of associating detector hits to particle tracks. Increasing the lumi-
nosity in particle colliders commonly introduces additional collisions at each bunch crossing
(pileup) and increases detector occupancy. More efficient solutions to this computational
problem thus allow for higher data acquisition rates and increased sensitivity for rare pro-
cesses. In future colliders such as the proposed hadron-hadron collider FCC-hh, the increase
in pileup rate requires dedicated studies of the feasibility of track reconstruction with current
algorithms and software to support these studies.

In this paper we report on TrickTrack [1], a standalone library created from the cellular
automaton-based seeding code used in the CMS experiment, in order to establish the perfor-
mance of current algorithms in the context of the FCC and to enable developments to extend
them. The implementation of the code and its usage in CMS are described in detail in Ref.
[2].

The basic concepts of the HitChainMaker algorithm that is at the core of the TrickTrack
library are illustrated in Fig. 1. Information on the exact detector geometry only enters via
the hit position and connections between tracking layers, eliminating the need for a detailed
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Figure 1. Schema of the basic concepts of the HitChainMaker algorithm. Hits on neighboring layers
are connected to hit doublets, which form the cells of the cellular automaton. Track seeds are created
from doublets that share a hit. To grow the track seeds, the cellular automaton is evolved using an
update rule that increments an internal integer state variable of any cell if it has inner neighbors with
the same state. The states of the cells after two iterations are represented by different colors.

geometry description for any experiment that measures three dimensional space points. Stor-
ing hit positions by reference to the module and channel that was hit is usually slighly more
efficient. However, this representation allows the library to be effectively decoupled from
details of the experimental geometry and thus be very general.

The cells acted on by the algorithm are formed by doublets of hits on neighboring layers
and connections between doublets sharing one hit. The number of possible track candidates
can be reduced both in the doublet creation step and while connecting the cells using de-
fault or user-implemented filters. The default geometric filters included in the libraries will
be useful for most detector geometries in which the magnetic field in the seeding region is
approximately constant. They filter track seeds whose curvature and longitudinal alignment
exceeds a given parameter and is not compatible with a track originating from a luminous
region, which is also defined by the user. This filtering step is easily extensible and adaptable
as any classifier for two and three hits can be used in conjunction with TrickTrack. To extract
tracklets of length n from the connected cells, the HitChainMaker performs n — 2 evolutions
of a cellular automaton, incrementing the state of each cell with same-state inner neighbors.
A depth-first search starting from cells whose state equals 7 finally yields all possible track
candidates.

As it relies exclusively on local operations, the HitChainMaker algorithm is well adapted
to parallel computing infrastructures. However, the computing performance is still dominated
by the filters used to suppress fake tracks. Fig. 2 shows the pure computing performance for
varying fake rates at constant input size (or equivalently varying input size at constant fake
rate).

2 Track parameter estimation using the Riemann Fit

Many approaches to track reconstruction including the Kalman Filter require an estimate
of the parameters of the initial track comprised of the seeding hits. The Riemann fit [3] is
well-suited for obtaining a first estimate of the track parameters, requiring as input only a
subset of the hits of the track. Fig. 3 shows that the computing performance is sufficient,
allowing the calculation of track parameters even for a large number of track seeds. This
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Figure 2. Computing performance of the TrickTrack implementation of the HitChainMaker.

method is limited to homogeneous solenoidal magnetic fields, but this condition is typically
fulfilled in the detector regions where tracks are reconstructed. The Riemann fit is not an
iterative method, but operates on matrices that scale with the number of hits to be fitted. For
performance reasons it is preferrible to operate on fixed-size matrices, which require the user
to declare the maximum number of hits in one fit during compilation. Fig. 3 also shows the
cost of expanding the fit to more than the typical number of hits in a track seed.
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Figure 3. Computing performance of the TrickTrack implementation of the Riemann Fit. The max-
imum number of hits to be fitted is a compile-time constant that determines matrix size and thus the
performance of the fit.



3 Software infrastructure

In order to fit into a modular software ecosystem and enhance usability, TrickTrack follows
the HEP Software Foundation best practices [4]. Dependencies are kept minimal. Apart from
the use of the Eigen library [5] for linear algebra, there are no required external libraries.
Special consideration is given to the issue of integrating the library into software frameworks
currently in use by experiments. The code is fully templated on the data structure describing
the track hit in order to avoid unnecessary data conversions.

Capturing the library logging output in external software frameworks is a requirement for
thorough bookkeeping of compute jobs. TrickTrack fulfills this requirement by its use of the
spdlog library [6] and customizable macros.

A high level interface interface with python bindings decreases the work needed to setup
and run the reconstruction code for new users.

4 Application to the Future Circular Collider
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Figure 4. Seeding efficiency for single muons in the FCC-hh tracker. The left plot shows the efficiency
versus transverse momenta, the right plot shows efficiency versus the particle trajectory inclination
towards the beamline. The cut for the right plot is pr > 10 GeV, so as not to show inefficiencies of low-
pr particles. The TrickTrack-based track seeding covers the full design range of the FCC-hh tracker for
very forward and low-momentum particles.

Beyond the original use in CMSSW, a software collection for data processing in the CMS
experiment, the decoupled code has been applied to track reconstruction for the Future Cir-
cular Collider (FCC) Design Study [7]. Experiments at the hadronic Future Circular Collider
(FCC-hh), a proposed high-energy frontier particle accelerator using a 100 km tunnel infras-
tructure to reach center of mass energies of up to /s = 100 TeV, will have many similarities
with current LHC experiments. However the increased center-of-mass collision energy im-
poses some new requirements on the detectors, such as a larger acceptance in the forward
region, and track reconstruction in particular is greatly complicated by the large rate of si-
multaneous proton-proton collisions per bunch crossing. Current designs foresee more then
1000 of these pileup collisions in addition to the hard scatter event that triggered data taking.

To study the efficiency of the reconstruction, the detector response to single muons was
simulated using Geant4 full detector simulation integrated in the FCC software framework



[8]. The tracker layout used is shown in Fig. 5 and is the baseline layout for the FCC-
hh detector studies. TrickTrack , integrated as part of the reconstruction chain in the FCC
software framework, reconstructs the simulated data forming track seeds comprised of hit
quadruplets. The efficiency for single muons is shown in Fig. 4.

4.1 Detector geometry and layer graph
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Figure 5. FCChh tracker geometry v3.03 [9], showing the longitudinal layout of modules comprising
the inner layers used for seeding.
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Figure 6. Seeding acceptance for tracks with start vertices displaced radially from the luminous region,
for different numbers of seeding layers. Increasing the number of seeding layers allows for reconstruc-
tion of tracks originating even outside the innermost barrel layers.

In the case of FCC-hh, full coverage up to 7 = 6 can be achieved by using the inner barrel
and the inner and forward endcaps in the seeding graph. The acceptance for displaced tracks
can be extended by including the outer barrel layers. The acceptance for all tracks whose
production vertices are still within four seeding layers is almost perfect, as shown in Fig. 6.



5 Conclusion

The application of the CMS track seeding code, decoupled from the CMS software frame-
work in a standalone library to the FCC design study demonstrates the potential for synergies
in track reconstruction software. TrickTrack is integrated into the common FCC software
framework and FCC-hh in particular profits from the efficient implementation as a baseline
for current track reconstruction solutions and the flexibility to extend the code for further
developments to cope with the high pileup rates.
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