Exclusive production of Υ production in proton-proton collisions

Dmitry Ivanov
Sobolev Institute of Mathematics, Novosibirsk

Low x, September 12, 2009

Outline

- Exclusive production of Υ production in $p p-$ collisions photoproduction cross section for $\gamma p \rightarrow \Upsilon p$ subprocess
- QCD factorization approach at NLO [L. Szymanowsi, G. Krasnikov, D.I. '04] suffers from huge NLO corrections at $x \rightarrow 0$
- High energy resummations
- The method, analitical results
- Numerics
- Conclusions

Exclusive Υ production in pp- collisions

Experiment: will be measured at LHC and Tevatron
Theory: main ingredients

- Main production mechanism - photoproduction subprocess. Possible Odderon contribution (Leszek Motyka)
- gap survival, interesting physics

HERA data: $\sigma^{\gamma p \rightarrow \Upsilon(1 S) p}(W), 100 \mathbf{G e V}<W<180 \mathbf{G e V}$
Many theoretical calculations (dipole model, k_{\perp} factorization): Klein, Nystrand; Motyka, Watt; Rybarska, Schäfer, Szczurek; Goncalves, Machado; Forshow, Shaw ...

- my apologies to those not mentioned!

Personal opinion: Theoretical uncertainties of these methods remain to be poorly understood

Our approach - Leading twist collinear factorization + NRQCD
Υ photoproduction. Heavy quark mass provides a hard scale.
Kinematic scale: $Q^{2}=M_{\Upsilon}^{2} \sim 100 \mathrm{GeV}^{2}$,
for decay in the central ATLAS and CMS detectors, one could probe $x=M_{\Upsilon}^{2} / W^{2}$ down to $x \sim 10^{-4}$

We believe that DGLAP works in this kinematical range for F_{2}, F_{L}.

Why should not try it for exclusive Υ production?

Factorization theorem for exclusive processes Collins, Frankfurt, Strikman '96

$$
\begin{gathered}
A=\sum_{i=q, g} \iint d x d z H^{i}\left(x, \xi, t ; \mu_{F}\right) C^{i}\left(x, z, \mu_{F}\right) \phi\left(z ; \mu_{F}\right) \\
\xi=x_{B} /\left(2-x_{B}\right), \quad x_{B}=\frac{Q^{2}}{W^{2}+Q^{2}}
\end{gathered}
$$

- light meson production: $\gamma^{*}+p \rightarrow(\rho, \phi, \pi, 2 \pi)+p$
- valid in Bjerken limit: $Q^{2} \rightarrow \infty$ and x_{B} fixed
- bad news : at small x_{B} an approach is unstable for ρ^{0}, ϕ
- M. Ryskin (1993) - LO prediction: $M \sim x g\left(x, Q^{2}\right), \sigma \sim\left(x g\left(x, Q^{2}\right)\right)^{2}$ later $x g\left(x, Q^{2}\right) \rightarrow \mathbf{G P D} H_{g}(x, \xi)$
- No all order factorisation theorem for quarkonium photoproduction.
- Explicit NLO calculation:[Krasnikov, Schäfer, Szymanowski, D.I. '04]
- collinear factorization is consistent with the use of the nonrelativistic approximation to the NLO accuracy.

We believe it can be systematically extended to higher orders using the NRQCD expansion:

$$
\begin{aligned}
& \mathcal{M}= \frac{4 \pi \sqrt{4 \pi \alpha} e_{q}\left(e_{V}^{*} e_{\gamma}\right)}{N_{c} \xi}\left(\frac{\left\langle O_{1}\right\rangle_{V}}{m^{3}}\right)^{1 / 2} \int_{-1}^{1} d x\left[T_{g}(x, \xi) F^{g}(x, \xi, t)+T_{q}(x, \xi) F^{q, S}(x, \xi, t)\right] \\
& F^{q, S}(x, \xi, t)=\sum_{q=u, d, s} F^{q}(x, \xi, t)
\end{aligned}
$$

Here $F^{g(q)}\left(x, \xi, t ; \mu_{F}^{2}\right)$ - the gluon (quark) GPDs, $\xi=M^{2} /\left(2 W^{2}-M^{2}\right)$ is the skewedness paramerer.

NRQCD - all information about the quarkonium structure is encoded in the NRQCD matrix element $\left\langle O_{1}\right\rangle_{V}$ which enters the leptonic decay rate

$$
\Gamma\left[V \rightarrow l^{+} l^{-}\right]=\frac{2 e_{q}^{2} \pi \alpha^{2}}{3} \frac{\left\langle O_{1}\right\rangle_{V}}{m^{2}}\left(1-\frac{8 \alpha_{S}}{3 \pi}\right)^{2}
$$

NLO corrections are large

$\sigma(W)$, in $p b$, NLO vs LO
$Q^{2} / 4 \leq \mu_{F}^{2} \leq Q^{2}$

- LO
- $N L O$
- par. of HERA data(L. Motyka)

$$
\sigma(W)=0.12 \mathbf{p b} \times\left(\frac{W}{\mathbf{G e V}}\right)^{1.6}
$$

High-energy resummation

- Why NLO corrections are large at small x_{B} ? large contribution comes from $\xi \ll x \ll 1(Q=M)$

$$
\operatorname{Im} A^{g} \sim H^{g}(\xi, \xi)+\frac{3 \alpha_{s}}{\pi}\left[\log \frac{Q^{2}}{\mu_{F}^{2}}-\log 4\right] \int_{\xi}^{1} \frac{d x}{x} H^{g}(x, \xi)
$$

$H^{g}(x, \xi) \sim x g(x) \sim$ const, therefore $\int d x / x H^{g}(x, \xi) \sim \log (1 / \xi) H^{g}(\xi, \xi)$
$x \sim \frac{s_{\gamma^{*} g}}{Q^{2}}$, Born contribution for BFKL:

At higher orders powers of energy log are generated

$$
\mathcal{I} m A^{g} \sim H^{g}(\xi, \xi)+\int_{\xi}^{1} \frac{d x}{x} H^{g}(x, \xi) \sum_{n=1} C_{n}(L) \frac{\bar{\alpha}_{s}^{n}}{(n-1)!} \log ^{n-1} \frac{x}{\xi}
$$

$C_{n}(L)$ - polynomials of $L=\log \frac{Q^{2}}{\mu_{F}^{2}}$, maximum power is L^{n}

- Can one calculate $C_{n}(L)$ using BFKL equation?
- Consistently with collinear factorization, in terms of corrections to coeff. functions and anomalous dimensions; say, in $\overline{M S}$ scheme
- for DIS a technique suggested by Catani, Ciafaloni and Hautmann; [Catani, Hautmann '94]
- May the method used in DIS be generalized to exclusive, nonforward processes?

In Mellin moment space high energy terms generate poles

$$
\frac{1}{x} \frac{\bar{\alpha}_{s}^{n}}{(n-1)!} \log ^{n-1} \frac{x}{\xi} \rightarrow\left(\frac{\bar{\alpha}_{s}}{N}\right)^{n}
$$

For high energy resummation we need to the study $N \rightarrow 0$ limit.

Like in DIS:

$$
\mathcal{I} m A(\xi, t)=\frac{1}{\xi} \int_{\xi}^{1} d x\left[D^{(+)}\left(\frac{\xi}{x}\right) \mathcal{H}^{(+)}(x, \xi, t)+\frac{1}{\xi} D^{g}\left(\frac{\xi}{x}\right) \mathcal{H}^{g}(x, \xi, t)\right]
$$

Mellin moments not factorize:

$$
\begin{gathered}
D_{N}(t)=\int_{0}^{1} d \xi \xi^{N} \mathcal{I} m A(\xi, t)= \\
\int_{0}^{1} \int_{0}^{1} d u d x u^{N-1} x^{N}\left[D^{(+)}(u) \mathcal{H}^{(+)}(x, u x, t)+\frac{1}{u x} D^{g}(u) \mathcal{H}^{g}(x, u x, t)\right]
\end{gathered}
$$

Polynomiality property:

$$
\int_{0}^{1} d x x^{n} \mathcal{H}^{g}(x, \eta, t)=\sum_{j=0, \text { even }}^{n}(2 \eta)^{j} A_{n+2, j}^{g}(t)+(2 \eta)^{n+2} C_{n+2}^{g}(t)
$$

For the odd N we have

$$
D_{N}(t)=\sum_{k=0}^{\infty} 2^{k}\left[D_{N+k-1}^{(+)} A_{N+k+1, k}^{q}(t)+D_{N+k-2}^{g} A_{N+k+1, k}^{g}(t)\right]
$$

$N \rightarrow 0$ limit. Singularities of coeff. functions are due to $k=0$ term only.

$$
D_{N}(t)=C_{N}^{(+)} q_{N}^{(+)}(t)+C_{N}^{g} g_{N}(t)+D_{N}^{\mathrm{reg}}(t)
$$

At $t \rightarrow 0, q_{N}^{(+)}(t) g_{N}(t)$ reduce to the moments of usual PDFs

$$
q_{N}^{(+)}(t) \rightarrow q_{N}^{(+)}=\int_{0}^{1} d x x^{N} q^{(+)}(x), \quad g_{N}(t) \rightarrow g_{N}=\int_{0}^{1} d x x^{N} g(x)
$$

method:

- Curci, Furmanski, Petronzio approach:

Amplitudes on parton (quark, gluon) target.

$$
\gamma^{*} g \rightarrow V g, \quad \gamma^{*} q \rightarrow V q
$$

Separation of leading twist.

- Dimensional regularization, $1 / \epsilon^{n}$ poles. Collinear factorization. Poles are absorbed into definition of parton densities.

$$
\Gamma_{N}=\exp \left(\frac{1}{\epsilon} \int_{0}^{\alpha_{S}\left(\mu_{F} / \mu\right)^{\epsilon} S_{\epsilon}} \frac{d \alpha}{\alpha} \gamma_{N}(\alpha)\right), \quad S_{\epsilon}=\exp \{-\epsilon(\psi(1)+\ln 4 \pi)\}
$$

- BFKL equation in $D=4+2 \epsilon$ is not scale invariant. Iterative solution. Collinear singularities $-1 / \epsilon^{n}$ poles

The high energy terms are defined from the expression

$$
\begin{equation*}
C_{N}^{g} \sim h_{V}(\gamma) R\left(\frac{Q^{2}}{\mu_{F}^{2}}\right)^{\gamma} \tag{1}
\end{equation*}
$$

The gluon anomalous dimension is determined by $1=\left(\bar{\alpha}_{s} / N\right) \chi(\gamma)$, where $\chi(\gamma)$ is the BFKL eigenfunction, function R depends on $\bar{\alpha}_{s} / N$. Expanding C_{N}^{g} in the series of variable $y=\bar{\alpha}_{s} / N$ one can obtain analytical expressions for the polynomials $C_{n}(L)$.
k_{t} dependent amplitude of the gluon subprocess ($Q=M$)

$$
\begin{equation*}
h_{V}\left(k_{t}^{2}\right)=\frac{Q^{2}}{4 k_{t}^{2}+Q^{2}}, \tag{2}
\end{equation*}
$$

then we calculate its Mellin transform

$$
\begin{equation*}
h_{V}(\gamma)=\gamma \int_{0}^{\infty} \frac{d k_{t}{ }^{2}}{k_{t}{ }^{2}}\left(\frac{k_{t}{ }^{2}}{Q^{2}}\right)^{\gamma} h_{V}\left(k_{t}^{2}\right)=4^{-\gamma} \Gamma[1+\gamma] \Gamma[1-\gamma] . \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& L=\log \left(\frac{Q^{2}}{\mu_{F}^{2}}\right), \quad x=\frac{\bar{\alpha}_{s}}{N} \\
& \Upsilon: \\
& 1+x(L-\log 4)+\frac{x^{2}}{6}\left(\pi^{2}+3 \log ^{2} 4+3 L(L-\log 16)\right)+\ldots+\mathcal{O}\left(x^{10}\right) \\
& \quad \rho^{0}: \\
& 1+x(L-2)+\frac{x^{2}}{2}(8+L(L-4))+\frac{x^{3}}{6}(28 \zeta(3)-48+L(L(L-6)+24))+\ldots+\mathcal{O}\left(x^{10}\right)
\end{aligned}
$$

Coeff. functions at small $\mathbf{x} /$ their Mellin moments at $N \rightarrow 0$

$$
\begin{aligned}
& F_{L}-[\text { Catani, Hautmann '94] } \\
& \mu_{F}^{2}=Q^{2} \\
& F_{L}: \quad 1-\frac{1}{3} x+2.13 x^{2}+2.27 x^{3}+0.434 x^{4}+\ldots \\
& \rho^{0}: \quad 1-2 x+4 x^{2}-2.39 x^{3}-4.09 x^{4}+\ldots \\
& \Upsilon: \quad 1-1.39 x+2.61 x^{2}+0.481 x^{3}-4.96 x^{4}+\ldots \\
& \mu_{F}^{2}= \\
& F_{L}: \quad 1+1.05 x+2.63 x^{2}+5.35 x^{3}+8.97 x^{4}+\ldots \\
& \rho^{0}: \\
& J / \Psi: \quad 1-0.614 x+2.19 x^{2}+1.68 x^{3}-0.958 x^{4}+\ldots \\
& J / 0 . x+1.64 x^{2}+3.21 x^{3}+1.08 x^{4}+\ldots
\end{aligned}
$$

$$
\mathcal{I} m A^{g} \sim H^{g}(\xi, \xi)+\int_{\xi}^{1} \frac{d x}{x} H^{g}(x, \xi) \sum_{n=1} C_{n}(L) \frac{\bar{\alpha}_{s}^{n}}{(n-1)!} \log ^{n-1} \frac{x}{\xi}
$$

without loss of accuracy $H^{g}(x, \xi) \rightarrow x g(x)$, but LO $-H^{g}(\xi, \xi)$ should be kept. $C_{n}(L)-L^{n}$ polynomials we have calculated, $L=\log \frac{Q^{2}}{\mu_{F}^{2}}$
in the numerics below we used:

- - CTEQ6M PDFs
- for LO term: $x g(x) \rightarrow H^{g}(\xi, \xi)$ - Radyushkin DD model
- substitute the first term $(n=1)$ in the sum, by the exact NLO coefficient
- BFKL logs affect both the coeff. functions and the parton distributions themselves.
- The importance of such logarithms for the evolution of parton distributions is a subject of ongoing debate.
It seems that resulted effect at $Q^{2} \sim 50 \mathbf{G e V}^{2}, x \sim 10^{-2} \div 10^{-4}$ is not much different from the conventional NLO DGLAP evolution.
- Whereas the BFKL corrections to parton distributions are universal, the corrections to hardscattering amplitudes are process-dependent
- BFKL-related corrections to coeff. functions for Υ prod. are very large, factor several larger that the similar corrections to, say, the longitudinal structure function $F_{L}\left(x, Q^{2}\right)$.
- Because of this, the LO resummation of BFKL energy logarithms in the coeff. functions can make sense and be a valid approximation (at least in a limited energy range)

BUT!

More realistic numerics still should include:

- resummed anomalous dimensions approach for μ_{F} evolution for $g\left(x, \mu_{F}\right)$

Convergence of resummation
$\mu_{F}^{2}=100 \mathbf{G e V}^{2}$

- $L O$
- $L O+1$ st high en. term
- $L O+2$ high en. terms
- $L O+5$ high en. terms
- $L O+6$ high en. terms
$\mu_{F}^{2}=25 \mathrm{GeV}^{2}$

Comparison with ZEUS (96-07) $468 \mathrm{pb}^{-1}$ data:

$$
\begin{aligned}
& \sigma^{\gamma p \rightarrow \Upsilon(1 S) p}=160 \pm 51_{-21}^{+48} p b \quad \text { for } \quad<W>=100 \mathrm{GeV} \\
& \sigma^{\gamma p \rightarrow \Upsilon(1 S) p}=321 \pm 88_{-114}^{+45} p b \quad \text { for } \quad<W>=180 \mathrm{GeV}
\end{aligned}
$$

Input for our calculation:

$$
m_{b}=4.9 \mathbf{G e V}, \quad b_{\Upsilon}=4.5 \mathbf{G e V}^{-2}
$$

Our results:
$Q^{2} / 4<\mu_{F}^{2}<Q^{2}$

$$
\begin{aligned}
\sigma^{L O}(100) & =214 \div 185 p b, \quad \sigma^{r e s}(100)=159 \div 144 p b \\
\sigma^{L O}(180) & =492 \div 358 p b, \quad \sigma^{r e s}(180)=427 \div 332 p b
\end{aligned}
$$

$Q^{2} / 2<\mu_{F}^{2}<Q^{2}$

$$
\begin{aligned}
\sigma^{L O}(100) & =214 \div 202 p b, \\
\sigma^{L O}(180) & =492 \div 430 p b,
\end{aligned} \quad \sigma^{r e s}(100)=159 \div 156 p b, ~(180)=345 \div 332 p b
$$

Summary

- NRQCD - natural framework for Υ production. Expansion parameter: $\frac{v}{c} \sim \alpha_{s}$, first rel. correction $\sim\left(\frac{v}{c}\right)^{2} \sim \alpha_{s}\left(m_{b}\right)^{2} \sim 0.046$.
- Scale parameter: $Q^{2} \sim m_{\Upsilon}^{2} \sim 100 \mathrm{GeV}^{2}$. Leading twist collinear QCD factorization should be an adequate tool.
- NLO correction are large at small x. Need for high-energy resummation.
- The approach used earlier for DIS may be generalized to hard exclusive reactions. We obtain analitical results for resummed coefficient functions. Numerical estimates give encouraging results.

To be done:

- Incorporate resummed parton PDFs in the analysis
- Consider other processes: $F_{L} ; \rho, J / \Psi$ - exclusive production

