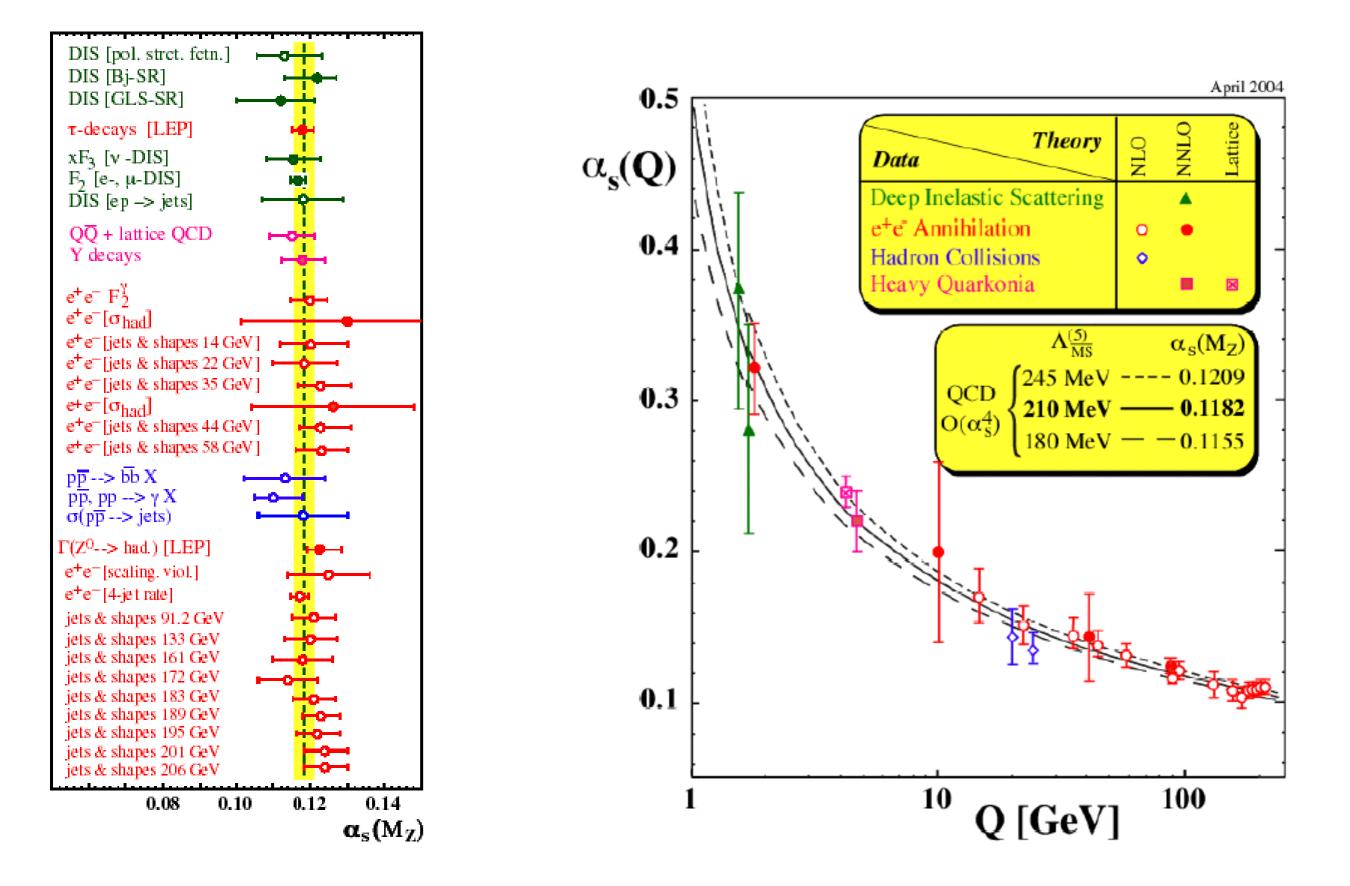
Tests of Universality of Baryon Form Factors In Holographic QCD

A. Cherman, T.D. Cohen, M. Nielsen, PRL103(09)

Univ. of Maryland and Univ. of Sao Paulo

Low x Meeting, September 2009

QCD: strong-coupled theory



AdS/QCD models: successful at reproducing low energy hadronic observables

two classes of AdS/QCD models

arise from sting theory

D4/D8 system \Rightarrow gauge theory confining as QCD

AdS/CFT requires large N_c and 't Hooft coupling Botton-up models:

QCD large $N_c \Rightarrow$ dual to a classical 5D theory

field content 5D matched

to low energy chiral symmetry of QCD

Both cases: large N_c is required

- QCD is a weakly-interacting theory of long-lived mesons in the large N_c limit.
- In the large N_c limit, baryons are 'soliton-like' configurations of meson fields.
 - Baryon masses scale as N_c^1 (composed of N_c quarks), interactions with mesons scale as $N_c^{1/2}$.
 - Unlike mesons, baryons are not narrow at large N_c .
 - Nucleons, deltas, become degenerate. Mass splitting scales as N_c^{-1} .
 - In contrast to the pure meson sector, meson loops make leading order contributions to baryon properties at large N_c.
- Variety of baryon models (Skyrme models) use large N_c properties of baryons for inspiration.
 - Baryons modeled as quantum states of slowly rotating hedgehog Skyrmions of meson fields.

Skyrme, 1961

Adkins, Nappi, Witten, 1983

Dashen, Manohar, Jenkins,1993-95

't Hooft, 1973

Witten, 1979

Model-independent relations for baryons valid at large $N_{\rm c}$

- Goldberger-Treiman relation: $m_N g_A = f_{\pi} g_{\pi NN}$
- Relation is model-indepedent, and follows from chiral symmetry.
- Nucleon and delta couplings with pions are related by
 - $2g_{\pi NN} = 3g_{\pi N\Delta}$ • This relation follows just from the large N_c limit
- New model-independent relation:
- Ratio of nucleon form factors in position space, evaluated at large distances: $\lim_{r \to \infty} \frac{G_E^{I=0}(r)G_E^{I=1}(r)}{G_M^{I=0}(r)G_M^{I=1}(r)} = \frac{18}{r^2}$
- Relation depends on *both* the large N_c and chiral limits.
- Can serve as a useful and highly non-trivial probe of large N_c baryon models.

Model independence of the ratio

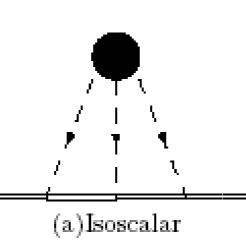
Leading large r behavior of form factors in large N_c ChiPT are mediated by pions

 $G_E^{I=0}(r)$

 $G_M^{I=0}(r)$

 $G_E^{I=1}(r)$

 $G_M^{I=1}(r)$

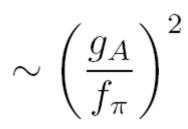


(b)Isovector

Three pion interaction - comes from anomaly.

$$\sim \frac{1}{f_\pi^3} \left(\frac{g_A}{f_\pi}\right)^3$$

Two pion interaction.



 In the large N_c limit, leading contributions to isovector electric and isoscalar magnetic form factors are sensitive to the nucleondelta mass splitting ~ 1/N_c (Cohen PLB 359)

$$G_E^{I=1} \propto \Delta \left(\frac{g_A}{f_\pi}\right)^2$$

$$G_M^{I=0} \propto \frac{\Delta}{f_\pi^3} \left(\frac{g_A}{f_\pi}\right)^3$$

$$G_M^{I=1} \propto \left(\frac{g_A}{f_\pi}\right)^2$$

$$G_E^{I=0} \propto \frac{1}{f_\pi^3} \left(\frac{g_A}{f_\pi}\right)^3$$

$$\lim_{r \to \infty} \frac{G_E^{I=0}(r) G_E^{I=1}(r)}{G_M^{I=0}(r) G_M^{I=1}(r)}$$

ratio is independent of

 $g_A f_{\pi}$

Skyrme-type models

$$\mathbf{L} = \frac{1}{2^6} f_{\pi}^2 \operatorname{Tr} \left[\partial_{\mu} U \partial^{\mu} U^{\dagger} \right] + \frac{1}{2^5 e^2} \operatorname{Tr} \left[(\partial_{\mu} U) U^{\dagger}, (\partial_{\nu} U) U^{\dagger} \right]^2$$
$$U = e^{\frac{i \vec{\pi} \cdot \vec{\tau}}{f_{\pi}}} \quad \Longrightarrow \quad \operatorname{SU}(2) \text{ matrix}$$

- Original Skyrme model includes only pion fields.
 - Baryons appear as quantum states of slowly rotating hedgehog Skyrmions of pion fields.

hedgehog ansatz: $\vec{\pi} = f(r)\vec{\tau}$

in the large *r* limite *f*(*r*) goes like

 η/r^2

in the Skyrme model:

$$g_A = \frac{8\pi}{3} f_\pi^2 \eta$$

$$\lim_{r \to \infty} G_{I=0}^{E} = \frac{3^{3}}{2^{9}\pi^{5}} \frac{1}{f_{\pi}^{3}} \left(\frac{g_{A}}{f_{\pi}}\right)^{3} \frac{1}{r^{9}}$$
$$\lim_{r \to \infty} G_{I=0}^{M} = \frac{3\Delta}{2^{9}\pi^{5}} \frac{1}{f_{\pi}^{3}} \left(\frac{g_{A}}{f_{\pi}}\right)^{3} \frac{1}{r^{7}}$$
$$\lim_{r \to \infty} G_{I=1}^{M} = \frac{1}{2^{5}\pi^{2}} \left(\frac{g_{A}}{f_{\pi}}\right)^{2} \frac{1}{r^{4}}$$
$$\lim_{r \to \infty} G_{I=1}^{E} = \frac{\Delta}{2^{4}\pi^{2}} \left(\frac{g_{A}}{f_{\pi}}\right)^{2} \frac{1}{r^{4}}.$$

$$\lim_{r \to \infty} \frac{G_E^{I=0}(r) G_E^{I=1}(r)}{G_M^{I=0}(r) G_M^{I=1}(r)} = \frac{18}{r^2}$$

5D Skyrmions

Pomarol-Wulzer holographic baryon model

Pomarol, Wulzer, NPB809:347-361,2009.

Panico, Wulzer, arXiv:0811.2211

- Bottom-up AdS/QCD model: uses hard-wall AdS background, with two U(2) 5D gauge fields, L_M R_M, associated with 4D left and right quark currents (AdS/CFT dictionary).
 - Chiral symmetry broken by choice of IR boundary conditions for 5D gauge fields.
 - Has a 5D CS term to get anomaly physics right.

$$S = -\frac{M_5}{2} \int d^5 x \sqrt{g} \operatorname{Tr} \left[\mathbf{L}_{MN}^2 + \mathbf{R}_{MN}^2 \right] + \frac{-iN_c}{24\pi^2} \int_{5D} \left[\omega_5(\mathbf{L}) - \omega_5(\mathbf{R}) \right]$$

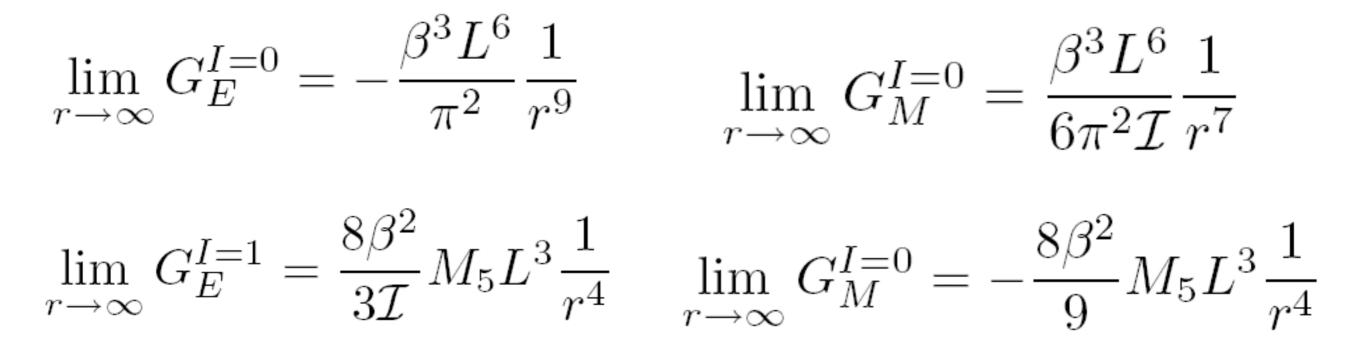
$$M_5 \sim \mathcal{O}(N_c^1)$$

- this model looks *quite* different from 4D Skyrme models: there are no explicit pion fields.
- Baryons appear as quantum states of slowly rotating Skyrmion-like hedgehog configurations of the 5D gauge field.
- Skyrmions are stabilized by the CS term.

	Experiment	AdS_5	Deviation
M_N	$940 { m MeV}$	$1130 { m MeV}$	20%
μ_S	0.44	0.34	30%
μ_V	2.35	1.79	31%
g_A	1.25	0.70	79%
$\sqrt{\langle r_{E,S}^2 \rangle}$	$0.79~\mathrm{fm}$	$0.88~\mathrm{fm}$	11%
$\sqrt{\langle r_{E,V}^2 \rangle}$	$0.93~\mathrm{fm}$	∞	
$\sqrt{\langle r_{M,S}^2 \rangle}$	$0.82~\mathrm{fm}$	$0.92~\mathrm{fm}$	12%
$\sqrt{\langle r_{M,V}^2 \rangle}$	$0.87~\mathrm{fm}$	∞	
$\sqrt{\langle r_A^2 \rangle}$	$0.68~\mathrm{fm}$	$0.76 \ \mathrm{fm}$	12%
μ_p/μ_n	-1.461	-1.459	0.1%

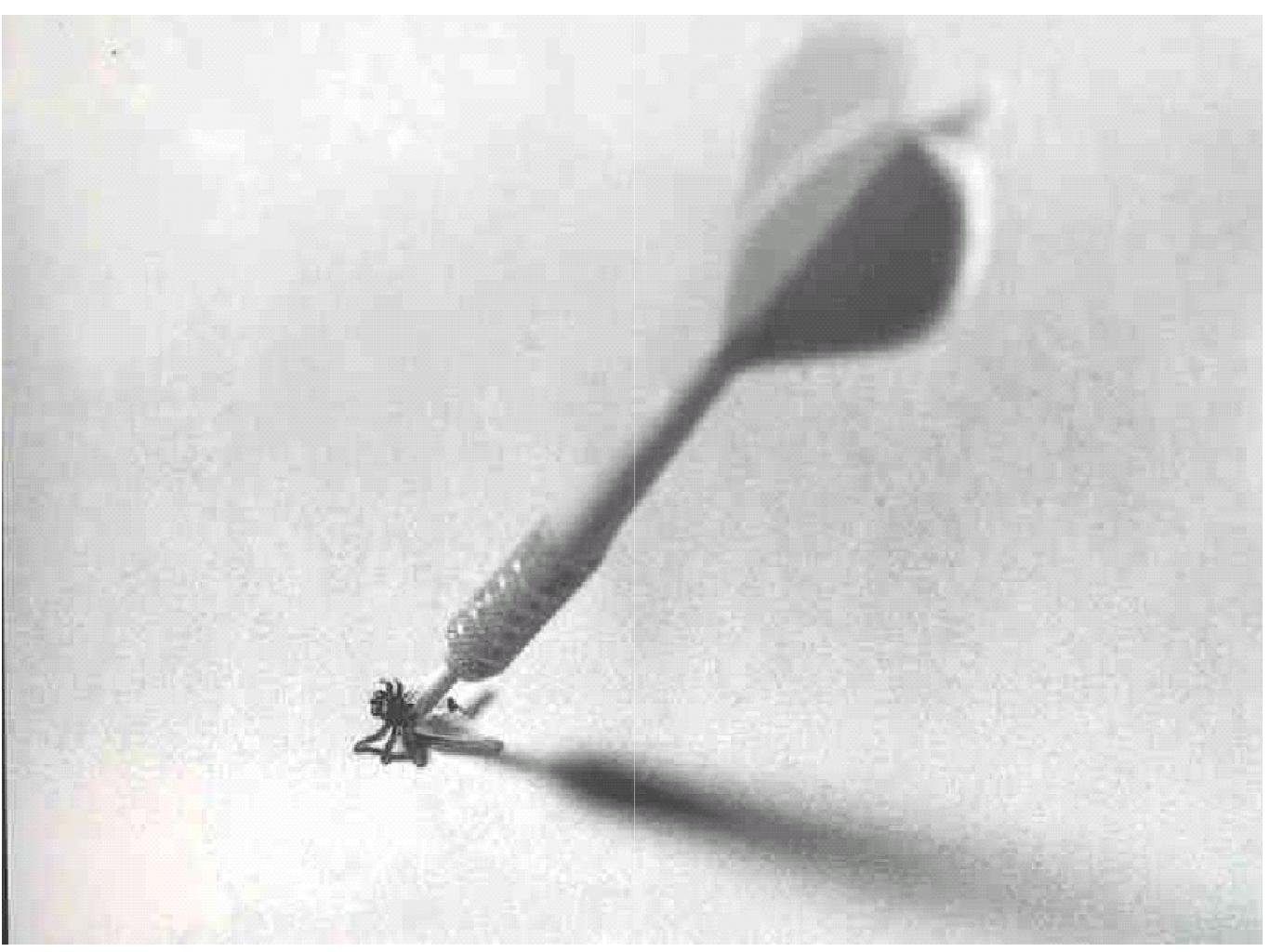
 $g_A = 0.65$ in the original Skyrme model

in the large r limit



$$\lim_{r \to \infty} \frac{G_E^{I=0}(r) G_E^{I=1}(r)}{G_M^{I=0}(r) G_M^{I=1}(r)} = \frac{18}{r^2}$$

large N_c and chiral physics handled correctly in Pomarol-Wulzer model



Baryons as Holographic Instantons

Sakai-Sugimoto model

Hata et al, hep-th/0701280

Hashimoto, Sakai, Sugimoto, PTP120:1093-1137,2008

 Top-down AdS/QCD model: baryons are described as instantons in a 5D Yang-Mills and CS theory, formulated in the D4/D8 model.

$$S = -\kappa \int d^4x dz \left(\operatorname{Tr} \frac{\mathbf{F}_{\mu\nu}^2}{2} (1+z^2)^{-1/3} + (1+z^2) \mathbf{F}_{\mu z}^2 \right) + \frac{N_c}{24\pi^2} \int \omega_5(\mathbf{A})$$

- $A_{\rm M}$:5D U($N_{\rm f}$) field, $F_{\rm MN}$: field strength, $\omega_5(A)$: CS 5-form
- Model expected to make sense when N_c and the 't Hooft coupling are large.

- CS term stabilizes the instanton size to be of order $\lambda^{-1/2}$
- At large λ higher derivative terms are not suppressed, and $1/\lambda$ expansion is not well justified

	SS model	Skyrmion ¹⁴	experiment
$\langle r^2 angle_{I=0}^{1/2}$	0.742 fm	$0.59~{ m fm}$	0.806 fm
$\langle r^2 angle_{M,I=0}^{1/2}$	0.742 fm	$0.92~{ m fm}$	$0.814~{ m fm}$
$\left< r^2 \right>_{E,\mathrm{p}}$	$(0.742 \text{ fm})^2$	∞	$(0.875 { m fm})^2$
$\left< r^2 \right>_{E,\mathrm{n}}$	0	$-\infty$	$-0.116~\mathrm{fm}^2$
$\langle r^2 angle_{M,\mathrm{p}}$	$(0.742 \text{ fm})^2$	∞	$(0.855 \text{ fm})^2$
$\langle r^2 angle_{M,\mathrm{n}}$	$(0.742 \text{ fm})^2$	∞	$(0.873 \text{ fm})^2$
$\langle r^2 angle_A^{1/2}$	0.537 fm	—	$0.674~{ m fm}$
μ_p	2.18	1.87	2.79
μ_n	-1.34	-1.31	-1.91
$\left \frac{\mu_p}{\mu_n} \right $	1.63	1.43	1.46
g_A	0.734	0.61	1.27
$g_{\pi NN}$	7.46	8.9	13.2
$g_{ ho NN}$	5.80	—	$4.2\sim 6.5$

in the large r limit

 $\lim_{r \to \infty} G_E^{I=0}(r) = \frac{g_{v^1} \psi_1(0)}{4\pi r} e^{-\rho_1 r}$ $\lim_{r \to \infty} G_M^{I=0}(r) = \frac{9\pi r}{16\pi\lambda N_c} g_{v^1} \psi_1(0) \rho_1 e^{-\rho_1 r}$ $\lim_{r \to \infty} G_E^{I=1}(r) = \frac{g_{v^1} \psi_1(0)}{4\pi r} e^{-\rho_1 r}$ $\lim_{r \to \infty} G_M^{I=1}(r) = \frac{N_c}{12\pi} \sqrt{\frac{2}{15}} g_{v^1} \psi_1(0) \rho_1 \ e^{-\rho_1 r}$ $\lim_{r \to \infty} \frac{G_E^{I=0} G_E^{I=1}}{\tilde{G}_M^{I=0} \tilde{G}_M^{I=1}} = \frac{\lambda \sqrt{40/3}}{\pi \rho_1^2 r^2}$ $\rho_1 \implies$ related with meson rho mass

- Model does not satisfy large N_c relation.
 - Ratio depends on model parameters.
- Model fails because it does not treat chiral symmetry correctly.
 - Another signal: the isovector charge radius is finite in the model. It is known to be infinite in chiral perturbation theory in the chiral limit.
- These results suggest that the Sakai-Sugimoto instanton model fails to correctly describe the long-range part of large N_c baryon physics.

Summary

- We discussed a model-independent large N_c relation for baryons. $\lim_{r \to \infty} \frac{G_E^{I=0}(r)G_E^{I=1}(r)}{G_M^{I=0}(r)G_M^{I=1}(r)} = \frac{18}{r^2}$
- Relation probes consistency of implementation of chiral and large N_c physics in baryon models.
 - In this case, the probe reveals that some holographic models get large N_c chiral physics right, while others do not.
 - This situation illustrates the utility of large N_c analysis as a diagnostic tool for probing models.
- Relation should be checked in other new large N_c baryon models.

http://www.sbf1.sbfisica.org.br/eventos/extras/hadrons2010/

origem of problem: I_{λ} ge expansion.

SS model: pion nucleon coupling scales as

- pion loops contributions to nucleon properties are discarded if the large λ limit is taken prior to the large N_c limit.
- It is necessary to go beyond large λ limit in the SS model to capture large N_c chiral physics.

Definitions

$$\begin{aligned} G_E^{I=0}(r) &= \frac{1}{4\pi} \int d\Omega \langle p \uparrow | J_{I=0}^0 | p \uparrow \rangle, \\ G_M^{I=0}(r) &= \frac{1}{4\pi} \int d\Omega \frac{1}{2} \varepsilon_{ij3} \langle p \uparrow | x_i J_{I=0}^j | p \uparrow \rangle, \\ G_E^{I=1}(r) &= \frac{1}{4\pi} \int d\Omega \langle p \uparrow | J_{I=1}^{03} | p \uparrow \rangle, \\ G_M^{I=1}(r) &= \frac{1}{4\pi} \int d\Omega \frac{1}{2} \varepsilon_{ij3} \langle p \uparrow | x_i J_{I=1}^{j3} | p \uparrow \rangle, \end{aligned}$$

 $J_{I=1}^{\mu 3} = \text{Tr} \left[J_{I=1}^{\mu} \sigma^3 \right]$

These position-space form factors can be related to the standard (experimentally accessible) momentum-space form factors by the appropriate Fourier transforms.