Soft models and survival probability

Low x meeting, Ischia Island, Italy September 8th – 13th 2009

Alan Martin, IPPP, Durham

"soft" scatt. destroys gaps in exclusive prod.

e.g.
$$pp \rightarrow p+H+p$$

 $\sigma \sim S^2 \left| \int f_g \mathcal{M}_{gg \rightarrow H} f_g \frac{dQ^2}{Q^2} \right|^2$

soft-hard

gap survival prob. S² to "soft"...factoriz"eikonal rescatt:between protonsconservedenhanced rescatt:involving intermediate partonsbroken

Model for "soft" high-energy interactions

needed to ---- understand asymptotics, intrinsic interest ---- describe "underlying" events for LHC jet algor^{ms} ---- calc. rap.gap survival S² for exclusive prodⁿ

"Soft" model should:

1. be self-consistent theoretically --- satisfy unitarity

→ importance of absorptive corrections
 → importance of multi-Pomeron interactions

2. agree with available soft data CERN-ISR to Tevatron range

$$\sigma_{\rm tot}, \ \frac{d\sigma_{\rm el}}{dt}, \ \frac{d\sigma_{\rm SD}}{dt dM^2} (pp \to pX)$$

3. include Pomeron comp^{ts} of different size---to study effects of soft-hard factⁿ breaking

Must include unitarity

$$SS^{\dagger} = I$$
 with $S = I + iT \rightarrow T - T^{\dagger} = iT^{\dagger}T$
elastic unitarity $\rightarrow 2$ Im $T_{el}(s,b) = |T_{el}(s,b)|^{2} + G_{inel}(s,b)$
 $\begin{cases} \frac{d^{2}}{dt} = 2 \text{ Im } T_{el} = 2 (1 - e^{-\Omega/2}) \\ \frac{d}{dt} = 1 \\ \frac{d^{2}}{dt} = 1 \\ \frac{d^{2}}{dt} = 1 \\ \frac{d^{2}}{dt} = 2 \text{ Im } T_{el} - |T_{el}|^{2} = 1 - e^{-\Omega} \end{cases}$
 $Q_{acily} / Eikonal - \Omega(s,b) \ge 0$
e.g. black disc
 $T_{el} = 1, -b < R \end{cases}$ $G_{bot} = 2\pi R^{2}$
 $e^{-\Omega}$ is the probability of no inelastic interaction

Elastic amp. $T_{el}(s,b)$

bare amp.
$$\Omega =$$

(SD -80%)

Im
$$T_{\rm el} = 1 - e^{-\Omega/2} = \sum_{n=1}^{\infty} \frac{1}{p^*}$$
 (-20%)

introduce diff^{ve} estates ϕ_i , ϕ_k (comb^{ns} of p,p^{*},..) which only undergo "elastic" scattering (Good-Walker)

Im
$$T_{ik} = \prod_{k=1}^{i} = 1 - e^{-\Omega_{ik}/2} = \sum \prod_{k=1}^{i} \dots \Omega_{ik}$$
 (-40%)

include high-mass diffractive dissociation

$$\Omega_{ik} = \prod_{k}^{i} + \prod_{k}^{i} M + \prod_{k}^{$$

triple-Regge analysis of $d\sigma/dtd\xi$, including screening

(includes compilation of SD data by Goulianos and Montanha)

 $g_{3P} = \lambda g_N \quad \lambda \sim 0.2 \quad \leftarrow \text{ large } ?$

so at collider energies $\sigma_{SD} \sim \sigma_{el}$

Multi-compt. s- and t-ch analysis of soft data

$$\sigma_{\rm tot}, \ \frac{d\sigma_{\rm el}}{dt}, \ \sigma_{\rm SD}(\text{low } M), \ \frac{d\sigma_{\rm SD}}{dt dM^2}$$
 KMR 2008

 3-channel eikonal, φ_i with i=1,3

model:

 include multi-Pomeron diagrams ansatz →

$$\bigwedge_{m}^{n} g_{m}^{n} = \operatorname{nm} \lambda^{n+m-2} g_{N}/2$$

 attempt to mimic BFKL diffusion in log q_t by including three components to approximate q_t distribution – possibility of seeing "soft → hard" Pomeron transition

Parameters

multi-Pomeron coupling λ from $\xi d\sigma_{SD}/d\xi dt$ data ($\xi \sim 0.01$)

diffractive eigenstates from $\sigma_{SD}(\text{low M})=2\text{mb}$ at sqrt(s)=31 GeV, -- equi-spread in R², and t dep. from $d\sigma_{el}/dt$

ResultsAll soft data well described $g_{3P} = \lambda g_N$ with $\lambda = 0.25$

 Δ_{Pi} = 0.3 (close to the BFKL NLL resummed value) α'_{P1} = 0.05 GeV-2

These values of the bare Pomeron trajectory yield, after screening, the expected soft Pomeron behaviour --- "soft-hard" matching (since P_1 heavily screened,..., P_3 ~bare)

 $\Delta_{R} = -0.4$ (as expected for secondary Reggeon) $\Delta = \alpha(0) - 1$

more valence

Description of CDF dissociation data

Calculation of S^2_{eik} for pp \rightarrow p + H +p

 $\overline{S^2}_{eik} \sim 0.02$ for 120 GeV SM Higgs at the LHC

 $\rightarrow \sigma \sim$ 2 - 3 fb at LHC

Calculation of $S^2_{enhanced}$ for pp \rightarrow p + H +p

Main enhanced rescatt. occurs at beginning of evolution. Evolution of "beam" affected by enhanced intⁿ with "target". S_{enh} changes (b, k_t) distribⁿ of active partons: breaks factⁿ Inclusion of Pomeron q_t structure enables S²_{enh} to be calculated

- 1. f_g's from HERA data already include rescatt. of intermediate partons with parent proton
- 2. Usually take $p_t=0$ and integrate with $exp(-Bp_t^2)$. S²/B² enters (where 1/B = $<p_t^2>$). But enh. abs. changes p_t^2 behaviour from exp., so quote S² $<p_t^2>^2$

 $<S_{tot}^{2}>=<S_{eik}^{2}S_{enh}^{2}>\sim 0.015$ (for B=4 GeV⁻²) $<S_{tot}^{2}><p_{t}^{2}>^{2} = 0.0015$ see arXiv:0812.2413

Comments on GLM(2008)

GLM include some 3P effects, but get $<S_{enh}^2 > = 0.063$ $<S_{tot}^2 > = 0.0235 \times 0.063 = 0.0015$

Calculation should be extended to obtain reliable S_{enh}

- 1. Need to calc. b, k_t dep., S_{enh} comes mainly from periphery (after S_{eik} suppression) where parton density is small. So S_{enh} (GLM) is much too small.
- 2. First 3P diagram is missing, so σ_{SD} much too small.
- 3. Four or more multi-Pomeron vertices neglected, so σ_{tot} asymptotically decreases (but GLM have σ_{tot} asym. const.). Model should specify energy interval where it is valid.
- 4. Need to consider threshold suppression.
- 5. Should compare predictions with observed CDF data.

Comments on Strikman et al.

also predict a v.small S_{enh} !

They use LO gluon with steep 1/x behaviour.

Obtain black disc regime at LHC energy, with low x gluon so large that only on the periphery of the proton will gap have chance to survive.

However, empricially the low x, low Q^2 gluon is flat – the steep 1/x LO behaviour is an artefact of the neglect of large NLO corrections.

Again should compare to CDF exclusive data.

Conclusions – soft processes at the LHC

-- screening/unitarity/absorptive corrections are vital

Triple-Regge analysis with screening → g_{3P} increased by ~3 → importance of multi-Pomeron diagrams (include, not just 3P vertices, but m→n vertices, otherwise σ_{total} decreases asymptotically)

-- Latest analysis of all available "soft" data: multi-ch eikonal + multi-Regge + compts of Pom. to mimic BFKL (showed some LHC predictions ... $\sigma_{total} \sim 90$ mb, $\sigma_{SD} \sim 20$ mb)

-- soft-hard Pomeron transition emerges

"soft" compt. --- heavily screened --- little growth with s, s^{0.08} "intermediate" compt. --- some screening "hard" compt. --- little screening --- large growth (~pQCD), s^{0.3} Conclusions – on gap survival probabilities

- -- There is consensus for survival prob. of gaps to eik. rescatt. e.g. S²=0.02 for pp \rightarrow p+H+p at LHC for 120 GeV SM Higgs
- A reliable calcⁿ. of survival to enhanced rescatt. requires a soft model which includes the k_t dep. of Pomeron exchange (soft-hard factorization breaking). Calcⁿ has subtlities.
 e.g. S² reduced by about 30% (conservative).
- -- Largest unknown is low x, low Q² gluon
- -- CDF exclusive data are encouraging. Exclusive dijet at LHC should be informative.