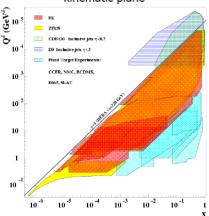
QCD results from DØ

Zdenek Hubacek

Czech Technical University in Prague (on behalf of DØ Collaboration)

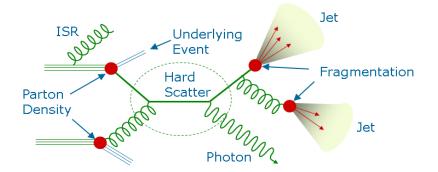
Workshop on Low-x Physics, Ischia Island, Italy September 8–13, 2009

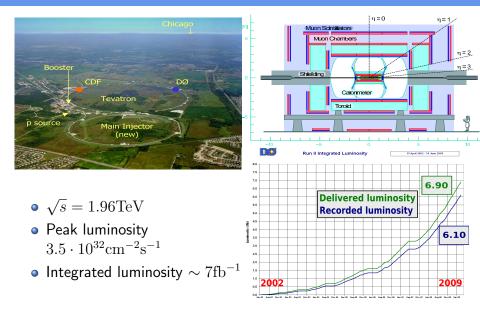


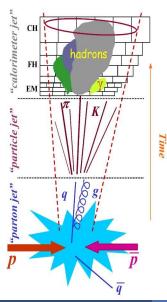
Outline

Motivation

- DØ Experiment
- DØ QCD Measurements


• Summary


kinematic plane


Motivation - large p_T processes in $p\bar{p}$ collisions

- Test of perturbative QCD (LO/NLO calculations, PDFs, $\alpha_{
 m S}$)
- Constrain of PDFs (high Q^2 , medium to high x)
- Background to other SM processes (top quark, Higgs) or to new physics (SUSY, 4th generation, extra dimensions, ...)

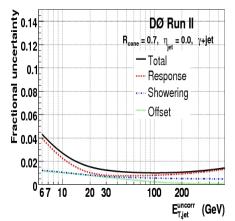
Tevatron and DØ Experiment Overview

• Calorimeter jet

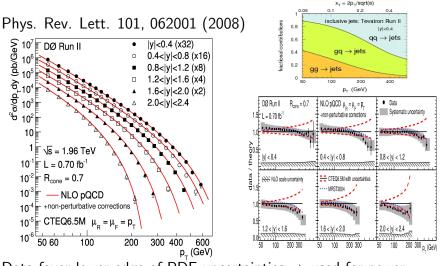
- interaction of hadrons with calorimeter
- collection of calorimeter cell energies

• Particle jet

- after hadronization and fragmentation
- effect of hadronization is soft \Rightarrow allows comparison between particle and parton jets


Parton jet

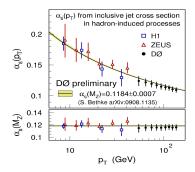
- hard scattering
- additional showers


Jet Energy Calibration

$$E_{\text{jet}}^{\text{corrected}} = \frac{E_{\text{jet}}^{\text{calorimeter}} - O}{R \cdot S}$$

- Offset (O) coming from calorimeter noise, underlying event, multiple interactions and pile-up
- Response (*R*) of the calorimeter to jets
- Showering (S) is a fraction of energy deposited outside the jet cone

Inclusive Jet Cross Section

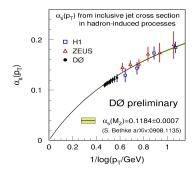


Data favor lower edge of PDF uncertainties \Rightarrow used for newer MSTW2008 PDF sets

Zdenek Hubacek (CTU Prague)

$$\sigma_{\text{pert}}(\alpha_{\text{S}}) = (\sum_{n} \alpha_{\text{S}}^{n} c_{n}) \otimes f_{1}(\alpha_{\text{S}}) \otimes f_{2}(\alpha_{\text{S}})$$

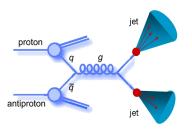
Use new MSTW2008 set which provides PDFs for several different $\alpha_{\rm S}$ values, select kinematic range where PDFs are not heavily influenced by Tevatron data (x < 0.2 - 0.3, $50 < p_T < 145 \,{\rm GeV}$).

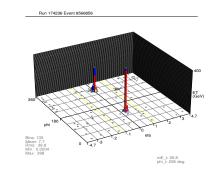


- NLO+ ${\cal O}(\alpha_{\rm S}^4)$ contributions from 2-loop threshold corrections
- The most precise determination of the strong coupling constant from hadron collider

•
$$\alpha_{\rm S}(M_Z) = 0.1173^{+0.0041}_{-0.0049}$$

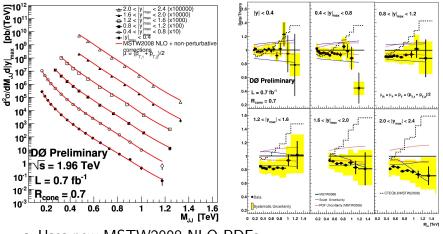
$$\sigma_{\text{pert}}(\alpha_{\text{S}}) = (\sum_{n} \alpha_{\text{S}}^{n} c_{n}) \otimes f_{1}(\alpha_{\text{S}}) \otimes f_{2}(\alpha_{\text{S}})$$

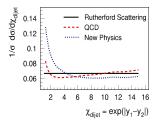

Use new MSTW2008 set which provides PDFs for several different $\alpha_{\rm S}$ values, select kinematic range where PDFs are not heavily influenced by Tevatron data (x < 0.2 - 0.3, $50 < p_T < 145 \,{\rm GeV}$).



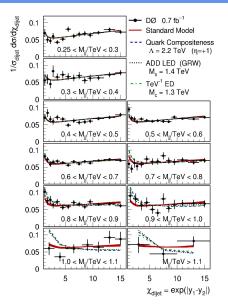
- NLO+ ${\cal O}(\alpha_{\rm S}^4)$ contributions from 2-loop threshold corrections
- The most precise determination of the strong coupling constant from hadron collider

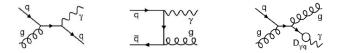
•
$$\alpha_{\rm S}(M_Z) = 0.1173^{+0.0041}_{-0.0049}$$


• Consistent with asymptotic freedom


- A few variables of interest:
 - Dijet $\Delta \phi$ Phys. Rev. Lett. 94 , 221801 (2005)
 - Dijet invariant mass
 - Dijet $\chi = \exp(|y_1 y_2|), y = 1/2 \ln[(E + p_L)/(E p_L)]$

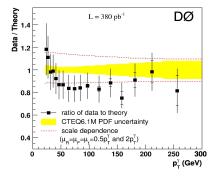
Dijet Mass Cross Section

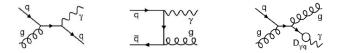

Uses new MSTW2008 NLO PDFs


Dijet Angular Distribution ($\chi = \exp(|y_1 - y_2|)$)

Best limits on new physics:

- Quark compositeness
- ADD Large extra dimensions
- TeV⁻¹ extra dimensions

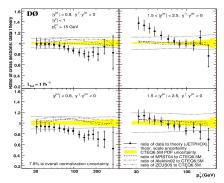


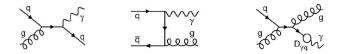


Direct photons emerge unaltered from the scattering process \rightarrow direct probe of hard scattering dynamics + potential sensitivity to PDFs

DØ published several measurements:

• Isolated photon cross section

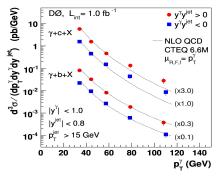


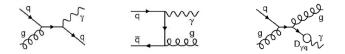


Direct photons emerge unaltered from the scattering process \rightarrow direct probe of hard scattering dynamics + potential sensitivity to PDFs

DØ published several measurements:

- Isolated photon cross section
- Photon+jet

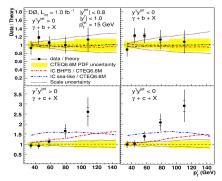


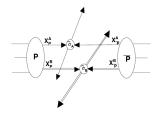


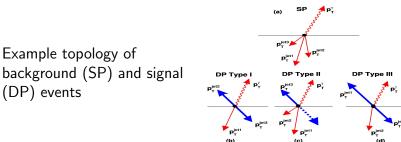
Direct photons emerge unaltered from the scattering process \rightarrow direct probe of hard scattering dynamics + potential sensitivity to PDFs

DØ published several measurements:

- Isolated photon cross section
- Photon+jet
- Photon+heavy flavor jet

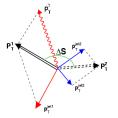



Direct photons emerge unaltered from the scattering process \rightarrow direct probe of hard scattering dynamics + potential sensitivity to PDFs


DØ published several measurements:

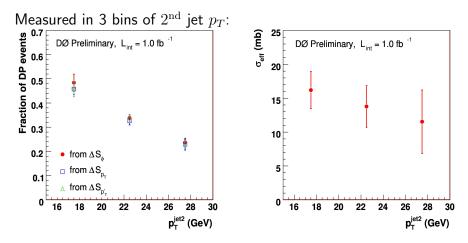
- Isolated photon cross section
- Photon+jet
- Photon+heavy flavor jet
- All with data/theory discrepancies - missing theory piece?

Events with photon and 3 jets can originate from double parton (DP) interaction $\sigma_{\rm DP} = \sigma_{\gamma j} \sigma_{j j} / \sigma_{\rm eff}$, where $\sigma_{\rm eff}$ is related to spatial distribution of partons in hadrons



Extracting Double Parton Fraction

Class of ${\boldsymbol{S}}$ variables to distinguish double parton interactions:


$$\begin{split} S_{p_T} &= \frac{1}{\sqrt{2}} \sqrt{\left(\frac{|\vec{p}_T(\gamma, i)|}{\delta p_T(\gamma, i)}\right)^2 + \left(\frac{|\vec{p}_T(j, k)|}{\delta p_T(j, k)}\right)^2} \\ S_{p'_T} &= \frac{1}{\sqrt{2}} \sqrt{\left(\frac{|\vec{p}_T(\gamma, i)|}{|\vec{p}_T^{\gamma}| + |\vec{p}_T^i|}\right)^2 + \left(\frac{|\vec{p}_T(j, k)|}{|\vec{p}_T^{\gamma}| + |\vec{p}_T^k|}\right)^2} \\ S_{\phi} &= \frac{1}{\sqrt{2}} \sqrt{\left(\frac{\Delta \phi(\gamma, i)}{\delta \phi(\gamma, i)}\right)^2 + \left(\frac{\Delta \phi(j, k)}{\delta \phi(j, k)}\right)^2} \end{split}$$

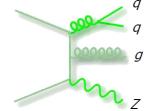
Two pairs with best balanced S are used to calculate ΔS $(\Delta S_{\phi} = \Delta \phi(\mathbf{p}_T(\gamma, i), \mathbf{p}_T(j, k)))$ which can be expressed as a sum of signal and background distributions + examining the distribution in two DP-enriched and DP-depleted data intervals (dependent on p_T^{jet2}) allows extraction of the DP fraction using χ^2 minimization.

Zdenek Hubacek (CTU Prague)

Double Parton Fraction

Double parton fraction drop from 0.47 ± 0.04 to 0.23 ± 0.03 , average $\sigma_{\text{eff}} = 15.1 \pm 1.9 \,\text{mb}$ (in agreement with CDF Run I result)

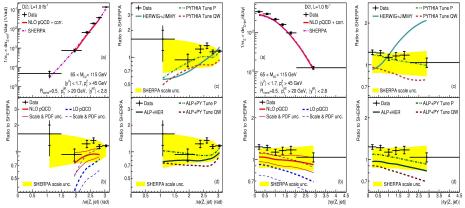
Z Boson + Jets


- Use W/Z bosons as a probe of QCD.
- Concentrate on high p_T final states = domain of pQCD
- These final states are backgrounds to many SM and BSM processes

Current status:

- pQCD
 - LO W/Z+ 1-6 partons
 - NLO W/Z + 1-2 partons
 - new NLO W + 3 partons
- Monte Carlo generators
 - LO $2 \rightarrow 1, 2 + \mathsf{PS}$ (Pythia, Herwig)
 - LO $2 \rightarrow 1-6$ ME + PS (Alpgen, Sherpa)

$\rightarrow Z$ + jets final state used for testing perturbative QCD and for tuning Monte Carlo generators


Zdenek Hubacek (CTU Prague)

Z+jets Angular Distributions

Already published Z+jets for 1-3 jets with jet p_T (PLB 669, 278 (2008), PLB 678, 45 (2009)), now look at angular distributions $(\Delta \phi(Z, \text{jet}), \Delta y(Z, \text{jet}), \ldots)$.

Good description by NLO and Pythia "tune Perugia"

Zdenek Hubacek (CTU Prague)

Summary and Conclusions

- First jet measurements in the TeV regime
 - ${\scriptstyle \bullet} \,$ Improvements in PDFs at high x
 - Best limits in some NP models
- Photon production something still missing need to improve theory
 - $\gamma + c$ jet disagreement for $p_T^{\gamma} > 70 \, {\rm GeV}$
- Model tuning multiple parton interactions, $W\!/Z\!+\!{\rm jets}$ modeling important for LHC
 - Z+jet angular distributions good agreement in shape by SHERPA, "tune P" gives best description of various PYTHIA tunes
- Many new results still to come from larger dataset

Backup

References

http://www-d0.fnal.gov/Run2Physics/WWW/results/qcd.htm

- Inclusive jets, dijets
 - Inclusive jets: Phys. Rev. Lett. 101, 062001 (2008)
 - Dijet $\Delta\phi$: Phys. Rev. Lett. 94, 221801 (2005)
- Photon measurements
 - Isolated photon cross section Phys. Lett. B 639, 151 (2006), Erratum Phys. Lett. B 658, 285 (2008)
 - Photon+jet cross section Phys. Lett. B 666, 2435 (2008)
 - Photon+heavy flavor jet cross section Phys. Rev. Lett. 102, 192002 (2009)
- Z+jets
 - ($Z \rightarrow \mu \mu) {+} {\rm jet}$ Phys. Lett. B 669, 278 (2008)
 - $(Z \rightarrow ee)$ +jets Phys. Lett. B 678, 45 (2009)

TABLE I: Expected and observed 95% C.L. limits in units of TeV on various new physics (NP) models for different Bayesian priors, and for the $\Delta\chi^2$ criterion.

	Prior flat in		Prior flat in		$\Delta\chi^2=3.84$	
	NP Lagrang.		NP x-section		criterion	
Model (parameter)	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.
Quark comp. (Λ)						
$\eta = +1$	2.91	3.06	2.76	2.84	2.80	2.92
$\eta = -1$	2.97	3.06	2.75	2.82	2.82	2.96
$\text{TeV}^{-1} \text{ED} (M_C)$	1.73	1.67	1.60	1.55	1.66	1.59
ADD LED (M_S)						
GRW	1.53	1.67	1.47	1.59	1.49	1.66
HLZ $n = 3$	1.81	1.98	1.75	1.89	1.77	1.97
HLZ $n = 4$	1.53	1.67	1.47	1.59	1.49	1.66
HLZ $n = 5$	1.38	1.51	1.33	1.43	1.35	1.50
HLZ $n = 6$	1.28	1.40	1.24	1.34	1.25	1.39
HLZ $n = 7$	1.21	1.33	1.17	1.26	1.19	1.32