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SPACE-TIME STRUCTURE OF DIFFRACTIVE EVENTS
σTOT ≡ σEL + σSD + σDD + σCD + σND

HOW TO CLASSIFY INELASTIC LHC EVENTS AS SD, DD, CD or ND
IN AN EXPERIMENT? 
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Cross Section (mb) GLMM (mb) KMR (mb) PYTHIA6.205 PHOJET1.12 "GW"(mb)

σTOT 92.10 88.00 101.50 119.00 90.00

σEL 20.90 20.10 22.20 34.40 20.00

σSD 11.80 13.30 14.30 11.00 10.00

σDD 6.10 13.40 9.80 4.06 5.00

(σEL + σDIFF )/ σTOT 0.42 0.53 0.46 0.42 0.39

Predictions for the proton-proton cross sections at the LHC  
(√s = 14 TeV), GLMM and KMR  PYTHIA6.205 and PHOJET1.12., 
“GW” refers to a Good and Walker based toy model. 

PREDICTIONS FOR THE DIFFRACTIVE CROSS SECTIONS 
VARY...

LOW MASS DIFFRACTION IS NOT UNDERSTOOD – WINDOW OF 
OPPORTUNITY FOR EARLY LHC.

σCD anywhere between a few µb’s to a few mb’s.



5

The TOTEM lay-out of leading proton detectors 
(Roman Pots). The detector locations at ±147m 
(RP1)  and at ±220 m (RP3) are shown . 

FORWARD DETECTORS (1):
THE ROMAN POTS AND ZDC

IN THIS ANALYSIS, THE ROMAN POTS ARE NOT USED 
IN CLASSIFYING THE LHC EVENTS.

ZDC detects neutrals at 0o
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The lay-out of TOTEM inelastic spectrometers, T1 
based on Cathode Strip Counters (CSC), and T2 
based on Gas Electron Multipliers (GEMs). 

(2) T1, T2 SPECTROMETERS, AND
CASTOR

T1 and T2 detect particle flows

CASTOR
detects energy 
flows
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veto counters

60m ~ 140m

Q1 Q2 Q3

D1

IP

Rapidity Gap Veto – Detector Lay-Out

magnification x vs. y: 70 80cm

80cm

(3) PROPOSED FORWARD SHOWER 
COUNTERS

The proposed upgrade of Forward Shower Counters, FSCs, to the CMS 
forward detector lay-out at ±60 to ±140 meters from the IP, the 10 vertical 
lines from ±60 m on indicate the locations of the proposed veto counters. 

60 to 140 meters

FSCs DETECT
INTERACTIONS
IN THE BEAM
PIPE

IP



8

 

d<
E

>
/d

η
[G

eV
/∆

η
=

 0
.5

]

d<
n>

/d
η

[1
/∆

η
= 

0.
5]

ENERGIES          MULTIPLICITIES

23 INPUTS FOR EVENT CLASSIFICATION
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• particle flows by TOTEM T1R/L, T2R/L spectrometers and CMS FSCR/L 

counters at ±60 to ±140 m from IP5 [5], 
 
• transverse energy detection by the CMS Barrel and End Cap Calorimetry, 

HFR/L, and CASTORR/L calorimeters 
 

• neutral particle detection by the CMS ZDCR/L calorimeters. 

INPUT INFORMATION FOR EVENT 
CLASSIFICATION

AIM AT A PROBABILISTIC APPROACH: EACH EVENT 
TO BELONG TO EVERY ONE OF THE EVENT CLASSES 
WITH A WEIGHT ≠≠≠≠ 0.
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Variable Comments
E_zdcl ZDC energy left
E_casl CASTOR energy left
E_hfl HF energy left
t2ml T2 multiplicity left
t1ml T1 multiplicity left

fwdm1l FSC multiplicity left plates 1-2
fwdm2l FSC multiplicity left plates 3-8
fwdm3l FSC multiplicity left plates 9-10
fwd1stl 1st FSC plane hit left
fwdmaxl FSC plane with the maximum amount of hits left
E_zdcr ZDC energy right
E_casr CASTOR energy right
E_hfr HF energy right
t2mr T2 multiplicity right
t1mr T1 multiplicity right

fwdm1r FSC multiplicity right plates 1-2
fwdm2r FSC multiplicity right plates 3-8
fwdm3r FSC multiplicity right plates 9-10
fwd1str 1st FSC plane hit right
fwdmaxr FSC plane with the maximum amount of hits right
endc_l CMS endcap energy left
endc_r CMS endcap energy right
barrel CMS barrel energy

INPUT 
FOR 
EVENT 
CLASSIFICATION

LEADING 
PROTONS
ARE NOT USED



11

Datasets 
 
 
 

• 12,000 events of each category (SD, DD, CD, and ND), were generated using either 
PYTHIA or PHOJET and GEANT. 

 
• To improve the classification accuracy and to facilitate learning of the data, the SD events 

were divided into two classes: SD1 and SD2, in which either the beam-1 proton 
(circulating anti-clockwise in the LHC ring) or the beam-2 proton (circulating clockwise in 
the LHC ring). 

 
• Each dataset was further sub-divided into a training data of 10,000 events and a test data 

of 2,000 events.  
 

• The algorithms were trained using the training data and their performance was validated 
using the test data.  

 
• The test data is presented to the algorithms only after the training phase is completed and 

can thus be used to verify the generalization capability of the classifiers. 

NOTE: LUMINOSITIES OF THE ORDER OF 1030 cm-2s-1 ASSUMED
⇒⇒⇒⇒ NO PILE-UP
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MULTIVARIATE TECHNIQUES

Gene expression programming (GEP): 
 
A recently introduced evolutionary algorithm (Ferrara) that is used to evolve 
expression trees (Figure).  
 
GEP is distinguished from other evolutionary algorithms by having separate 
representations and structures for the genotype (the chromosome) and the 
phenotype (the expression tree) of an individual.  
 
The algorithm is used to evolve simple, easy to manipulate, linear 
chromosomes represented as text strings, which in turn encode the more 
complex expression trees of various shapes and sizes.  
 
GEP can be seen as a combination of genetic algorithms and genetic 
programming; the former evolves binary strings while the latter is used to 
optimize the tree-like entities. 
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-*/aQbcaacbKarva expression of a chromosome:

tail

unitary function

letters: members 
of the terminal set

Translated into an 
expression tree; read
from left to right.

Note: Some of the tail
section is not used!
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Evolve the expression tree, encoded by the Karva expression, so that the 
output of the tree maximizes a predefined performance criterion, the 
fitness function.  
 
The expression trees evolved by GEP are here used as classifiers (the 
objective is to maximize the classification accuracy of the output of the tree 
given a set of input vectors).  
 
Each tree is here used for binary classification (signal/background
separation) only, by introducing a threshold (= 0.5) for the output of the 
tree.  When the output is equal to, or greater than the threshold, the input 
vector is classified as signal and below the threshold as background. 
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Neural Networks 
 

Neural networks (NN) are adaptive data modelling tools inspired by the 
functional model of the human brain.  
 
Since about a decade, the neural networks are widely used in high-
energy physics data analysis.  
 
Here a particular type of feed-forward neural networks, called the multi-
layer perceptron (MLP) network is used. The MLP network consists of an 
input layer, output layer and one or more hidden layers of neurons.  

When information propagates through the network in the forward 
direction, the weighted sum of the activation levels of the input neurons 
is fed into a hidden layer of Nhid neurons.  
 
The activation level of the hidden neurons is determined by a transfer 
function f  whose output is, in turn, fed into the output layer.  
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Support Vector Machines 
 
 
 
 

Support Vector Machines (SVMs) have become a popular multivariate 
analysis tool in high energy physics.  
 
SVMs are mostly used for classification tasks, but they can also be 
applied to e.g. regression.  
 
The main idea in SVMs is to find a hyperplane that separates two 
different data samples, representing different classes, with the largest 
possible margin. The margin is defined as the distance from the 
hyperplane to the closest data points.  
 
It is not always possible to find such a plane and, therefore, the data 
points are usually projected nonlinearly into a higher dimensional space 
before finding the optimal hyperplane. 
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Multi-class classification 
 
 
 
 

The classification algorithms are usually designed for binary problems, 
where the goal is to distinguish two classes 
 
⇒ multi-class classification tasks are often reduced into several binary 
problems.  
 
Several different techniques for the reduction exist:  
one-against-all, one-against-one and ordered binarization etc. 
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Self-organizing maps 
 

 
The self-organizing map (SOM) is an artificial neural network algorithm which is 
here used for dimensionality reduction and data visualization.  
 
With a SOM, a non-linear mapping of the analysed 23-dimensional space to a 
two dimensional map is achieved. 
 
The map consists of n by m nodes which all contain a model vector.  
 
The nodes are arranged on a hexagonal grid.  
 
The mapping of an input vector is conducted by going through all nodes and 
calculating Euclidean distances between model vectors and the input vector.  
 
The node with the smallest distance to the input vector is called the best 
matching unit (BMU) and the input vector is mapped to this node. 
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How well the different event categories are 
separated in the multivariate analysis?  
 
A SOM is trained with 60,000 PYTHIA or PHOJET 
simulated events (12,000 of each type).  
 
The different event categories are mapped on the 
SOM (Figure), with colour codes to identify the 
event categories: red for the SD1, green for the 
SD2, blue for the ND, black for the DD and yellow 
for the CD events.  
 
The larger the colour patch on a node the more 
events are mapped to the node.  
 
The map clearly demonstrates that the non-
diffractive events are easily identified; they are 
basically all clustered at the bottom of the map.  
 
Similarly, the CD events are rather well separated 
from the other diffractive event categories.  
 
The most significant overlap occurs between the 
SD and DD events. 

SOM ALGORITHM

SD
CD

ND

DD

SD
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Each input dimension is shown in a 
separate component plane.  
 
Red colour on a node of a component 
plane indicates that the variable usually 
receives large values among the events 
mapped to that node.  
 
 
 
 
 
 
 
 
 
The CMS barrel calorimeter values, 
indicate that it usually detects large 
energy depositions from the events that 
are mapped to the bottom and to the 
top-centre of the map.  
These regions mainly contain ND events 
and CD events ⇒ the ND and CD 
events tend to release large amounts of 
energy within the CMS barrel. 

THE 23 SOM MAP NODES
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Method Efficiency

GEP ordered binarization 92.49

GEP one-against-all 88.54

SVM ordered binarization 94.21

SVM one-against-one 94.38

NN ordered binarization 94.54

NN 5 outputs 94.42

EVENT CLASSIFICATION EFFICIENCIES

The efficiencies represent the probability of correctly classifying an event 
belonging to a randomly selected class. 
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Method DD SD CD ND

GEP ordered binarization 96.72 83.45 93.12 97.81

GEP one-against-all 83.85 82.78 91.01 97.18

SVM ordered binarization 97.75 84.40 96.37 99.97

SVM one-against-one 97.61 84.89 96.61 99.90

NN ordered binarization 97.44 85.19 97.04 99.92

NN 5 outputs 97.70 84.96 96.66 99.92

EVENT CLASSIFICATION PURITIES

The purities represent the probability that an event classified to a given class 
in fact belongs to that particular class.  
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The ND background is easily rejected by all three multivariate 
techniques; the single diffractive (SD), double diffractive (DD) and 
central diffractive (CD) event categories are well separated. 

 
When either CMS or TOTEM detectors are dropped out; significant 
decline in efficiencies/purities is obtained, i.e. both sets of detectors 
are required for a decent analysis outcome. 

 
The event classification results depend on the particular Monte Carlo 
model used to train and test the algorithms; As long as the models 
correctly reflect the kinematical constraints (energy-momentum 
conservation) and the cross features of different event categories, the 
results should reliably reflect the efficiencies and purities of a real 
event analysis at the LHC. 

CONCLUSIONS – PART 1
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Further development is being carried out by the authors: 
 
(1) to combine the best features of the three techniques into a unified 
probabilistic approach for event-by-event analysis, and  
 
(2) to develop an unsupervised scenario that is less dependent on a 
particular Monte Carlo model in use.   
 
The aim of the ongoing work is to develop an algorithm that can be 
used to evaluate relative rates of different diffractive event categories 
and, finally, to optimize the analysis of central diffractive production of 
JPC = 0++ states, such as heavy quarkonia, glueballs, Higgs boson, 
etc. 

CONCLUSIONS – PART 1...
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CENTRAL DIFFRACTION AT THE LHCb

LHCb IS IDEAL FOR DETECTING AND ANALYSING LOW MASS
CENTRAL DIFFRACTIVE PRODUCTION OF EXCLUSIVE π+π-/K+K-

STATES IN:

pp →p + M + p

glueballs, hybrids, heavy quarkonia: χc, χb

π+π-/K+K- STATES AS SPIN-PARITY ANALYZERs.

HOW TO FACILITATE THIS?

Jerry W. Lämsä and RO
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LHCb
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THE PROPOSED LHCb FSC LAY-OUT
ADD FSCs AT 20 – 100 METERS ON BOTH SIDES OF IP8 – THE FSCs
DETECT SHOWERS FROM THE VERY FORWARD PARTICLES.
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• TO DETECT A LOW MULTIPLICITY DECAY, A SMALL NUMBER OF 
CHARGED TRACKS ARE REQUIRED TO STRIKE THE SCINTILLATOR PAD 
DETECTOR (SPD).

• THE LHCb VErtex LOcator (VELO) IS REQUIRED TO HAVE NO CHARGED 
TRACKS (CENTRAL ANGLE VETO) WITHIN 10 – 170 deg.

• SIMULATION USES A COMBINATION OF PHOJET+PYTHIA & GEANT.

• ANGULAR ACCEPTANCE OF THE SPECTROMETER: < 250 mrad (vertical),
< 300 mrad (horizontal)

• NOTE: IN LOW LUMINOSITY LHCb RUNS, ONLY A SINGLE INTERACTION
PER BX IS EXPECTED.

TRIGGER FOR LOW CHARGED MULTIPLICITIES IN 
THE SPD, RESTRICT NO. OF CHARGED TRACKS IN 
VELO AND ABSENCE OF A SIGNAL IN FSCs
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PURITIES FOR EXCLUSIVE STATES

∆M ≈ 20 MeV
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CENTRAL DIFFRACTION ACCEPTANCE
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CENTRAL DIFFRACTION PURITY



32

Feasibility studies of the exclusive diffractive processes for the LHCb
experiment have been carried out.

With a simple addition of Forward Shower Counters (FSCs), the experiment
is shown to be ideally suited for detailed QCD studies and searches for
exotic mesons states, such as glueballs, hybrids, and heavy quarkonia.

CONCLUSIONS – PART 2



33

SINGLE DIFFRACTION BACKGROUND

SD events that satisfy the SPD 
trigger requirement ~9%

with the FSC veto
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The contributions from single diffractive events that produce a unique
π+π-/K+K- pair within the detector acceptance vs. mass of the pair.

SINGLE DIFFRACTION BACKGROUND
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FSC EFFICIENCY vs. DIFFRACTIVE MASS
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NON-DIFFRACTIVE BACKGROUND


