NLL predictions for jet gap jet cross sections at TeVatron and LHC

Florent Chevallier, O. Kepka, C. Marquet, C. Royon

Introduction

- BFKL evolution
- Process of interest

Phenomenology of jet-gap-jet events

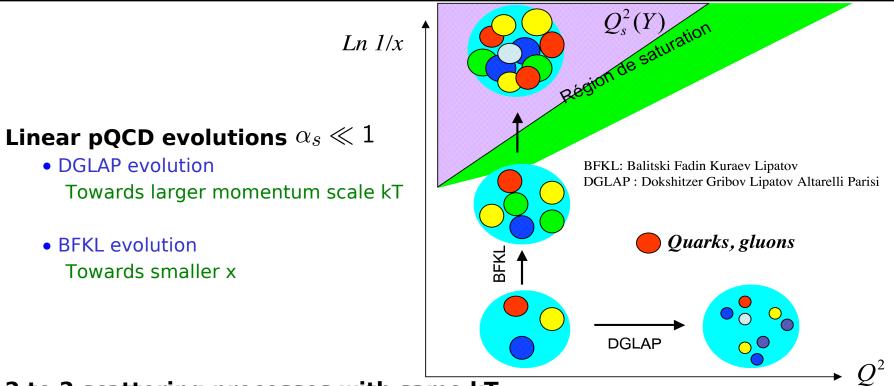
- Theoretical production cross-section
- Going to NLL-BFKL
- Implementation in Herwig Monte Carlo

Jet-gap-jet cross-sections at hadron colliders

- Corrections to LL-BFKL
- Comparison with DØ and CDF measurements
- Predictions for LHC

Introduction

- BFKL evolution
- Process of interest


Phenomenology of jet-gap-jet events

- Theoretical production cross-section
- Going to NLL-BFKL
- Implementation in Herwig Monte Carlo

Jet-gap-jet cross-sections at hadron colliders

- Corrections to LL-BFKL
- Comparison with DØ and CDF measurements
- Predictions for LHC

Introduction : BFKL evolution

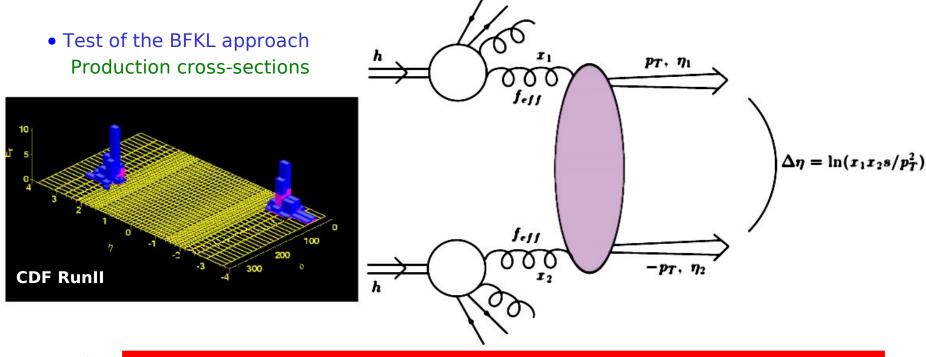
2 to 2 scattering processes with same kT

DGLAP evolution

No additional radiation is possible since jets have same kT

• BFKL evolution with Regge limit

Large rapidity interval between final-state particles Resummation of the large higher-order leading logs

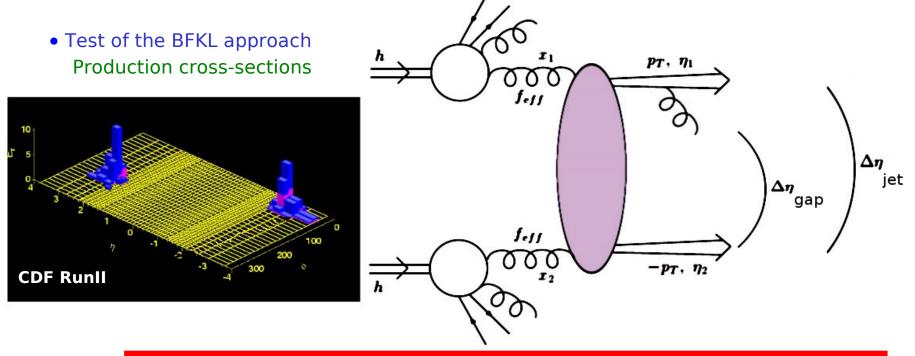


Signs of BFKL evolution in di-jets processes with same p_{τ} and large A η .

Process of interest

Gaps between jets

No energy deposits between jets
 Observed at TeVatron and HERA
 Measurement sensitive to the structure and size of the jets



1) Compute $d^2\sigma / dp_{\tau} dA\eta$ for large $\Delta\eta$, same pT for both jets

Process of interest

Gaps between jets

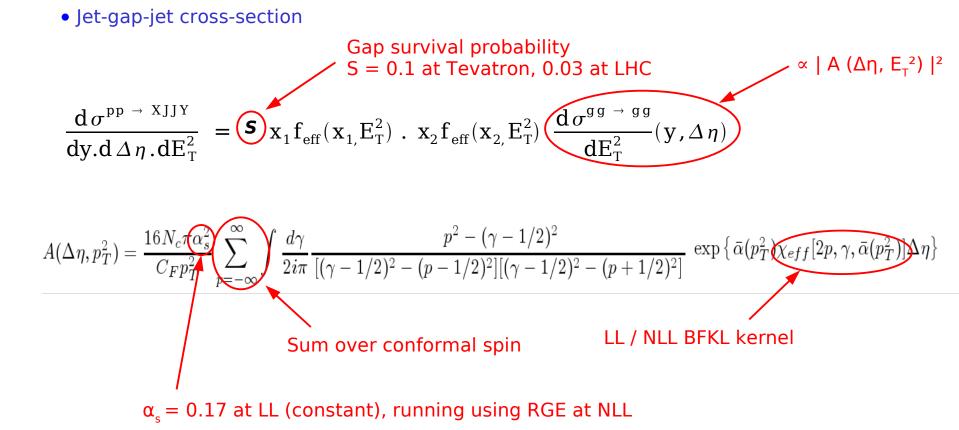
No energy deposits between jets
 Observed at TeVatron and HERA
 Measurement sensitive to the structure and size of the jets

1) Compute d²σ / dp_τ dAη for large Δη, same pT for both jets
 2) Implementation of BFKL NLL formalism in event generator (HERWIG)

Introduction

- BFKL evolution
- Process of interest

Phenomenology of jet-gap-jet events


- Theoretical production cross-section
- Going to NLL-BFKL
- Implementation in Herwig Monte Carlo

Jet-gap-jet cross-sections at hadron colliders

- Corrections to LL-BFKL
- Comparison with DØ and CDF measurements
- Predictions for LHC

BFKL formalism for jet-gap-jet production

Cross-section in the BFKL framework

 \Rightarrow 1 free parameter : the normalization

Going to NLL-BFKL

Going to NLL-BFKL

- Large corrections w.r.t. LL and lead to unphysical results
 NLL BFKL kernels need resummation
 Truncation of the perturbative series → spurious singularities in BFKL-NLL kernel
- Use of Salam's regularisation schemes

Singularities cancel when add some higher order corrections \rightarrow meaningful NLL-BFKL results

S3 and S4 schemes for forward jet production (modulo the impact factors taken at LL)

Full NLL-BFKL kernel available

• Resolution of implicit equation performed by numerical methods

$$\chi_{NLL} \xrightarrow{\text{regularization}} \chi_{NLL-S4} \xrightarrow{\text{implicit equation}} \chi_{eff}$$

$$\chi_{eff} = \chi^{NLL-S4} (\gamma, \alpha, \chi_{eff})$$

Implementation in Herwig Monte Carlo

Full calculation of the hard cross-section

$$\frac{\mathrm{d}\,\sigma^{\mathrm{gg}\,\rightarrow\,\mathrm{gg}}}{\mathrm{d}\mathrm{E}_{\mathrm{T}}^{\mathrm{r}}} \propto \left(\sum_{\mathrm{p}} \int \frac{\mathrm{d}\,\gamma}{\mathrm{t}_{\mathrm{i}\,\pi}} \frac{\mathrm{p}^{2} - (\gamma - \mathrm{t}\,/\,\mathrm{t}\,)^{2} \,.\, \exp\left\{\bar{\alpha}\,\mathrm{X}_{\mathrm{eff}}[\,\mathrm{t}\,\mathrm{p}\,,\gamma\,,\bar{\alpha}]\Delta\eta\right\}}{[(\gamma - \mathrm{t}\,/\,\mathrm{t}\,)^{2} - (\mathrm{p}-\mathrm{t}\,/\,\mathrm{t}\,)^{2}][(\gamma - \mathrm{t}\,/\,\mathrm{t}\,)^{2} - (\mathrm{p}+\mathrm{t}\,/\,\mathrm{t}\,)^{2}]}\right)^{\mathrm{r}}$$

Simulation of $O(10^6)$ events takes too much time

Parametrization of the hard cross-section

....

• Replace the theoretical formula by a polynomial form

$$\frac{d\sigma^{gg \rightarrow gg}}{dE_{T}^{2}} = f(E_{T}, \Delta \eta) \cdot \left(\hat{s}/E_{T}^{2}\right)^{2} / (4\pi\alpha_{s}^{4})$$
$$f(E_{T}, \Delta \eta) = A + C * E_{T} + E * \sqrt{E_{T}}$$

+
$$(\mathbf{B} + \mathbf{D} * \mathbf{E}_{\mathrm{T}} + \mathbf{F} * \sqrt{\mathbf{E}_{\mathrm{T}}}) \left(\frac{\mathbf{r} \pi \alpha_{\mathrm{s}} \Delta \eta}{\mathbf{r}}\right) + \dots$$

• Fit to BFKL NLL cross section 2200 points fitted between $10 < E_T < 120$ GeV, $0.1 < \Delta \eta < 10$ Fit $\chi 2 \sim 0.1$ (difference per point < 1%)

Integration over $\Delta \eta$, E_{T} performed in Herwig event generation

Meaningful predictions which takes into account jet structure and size

Implementation in Herwig Monte Carlo

Full calculation of the hard cross-section

$$\frac{d\,\sigma^{g\,g \to \,gg}}{dE_{\rm T}^2} \propto \left(\sum_{\rm p} \int \frac{d\,\gamma}{2i\pi} \frac{{\rm p}^2 - (\gamma - 1/2)^2}{[(\gamma - 1/2)^2 - ({\rm p} - 1/2)^2][(\gamma - 1/2)^2 - ({\rm p} + 1/2)^2]}\right)^2$$

Simulation of $O(10^6)$ events takes too much time

Parametrization of the hard cross-section

f

• Replace the theoretical formula by a polynomial form

$$\frac{\mathrm{d}\,\sigma^{\mathrm{gg}\,\rightarrow\,\mathrm{gg}}}{\mathrm{d}\mathrm{E}_{\mathrm{T}}^2} = \mathrm{f}(\mathrm{E}_{\mathrm{T}},\Delta\eta) \,.\,\left(\hat{\mathrm{s}}/\mathrm{E}_{\mathrm{T}}^2\right)^2\,/\,(4\,\pi\,\alpha_{\mathrm{s}}^4)$$

$$(\mathbf{E}_{\mathrm{T}}, \Delta \eta) = \mathbf{A} + \mathbf{C} * \mathbf{E}_{\mathrm{T}} + \mathbf{E} * \sqrt{\mathbf{E}_{\mathrm{T}}} + (\mathbf{B} + \mathbf{D} * \mathbf{E}_{\mathrm{T}} + \mathbf{F} * \sqrt{\mathbf{E}_{\mathrm{T}}}) \left(\frac{3\pi\alpha_{\mathrm{s}}\Delta\eta}{2}\right) + \dots$$

• Fit to BFKL NLL cross section 2200 points fitted between $10 < E_T < 120$ GeV, $0.1 < \Delta \eta < 10$ Fit $\chi 2 \sim 0.1$ (difference per point < 1%)

Integration over $\Delta \eta$, E_{τ} performed in Herwig event generation

Meaningful predictions which takes into account jet structure and size

Content

Introduction

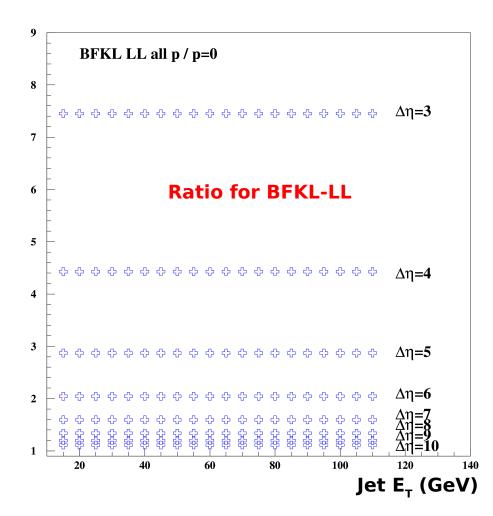
- BFKL evolution
- Process of interest

Phenomenology of jet-gap-jet events

- Theoretical production cross-section
- Going to NLL-BFKL
- Implementation in Herwig Monte Carlo

Jet-gap-jet cross-sections at hadron colliders

- Corrections to LL-BFKL
- Comparison with DØ and CDF measurements
- Predictions for LHC


Resummation over conformal spins at LL

Contributions from non-zero conformal spins

- Not perfomed before
- Study of the ratio

 $\frac{d\sigma/dE_{\rm T}(all\,p)}{d\sigma/dE_{\rm T}(p=0)}$

Large contribution
 x 4.5 for Δη=4
 x 1.5 for Δη=8
 Larger contribution at low Δη

Resummation over conformal spins at NLL

Contributions from non-zero conformal spins

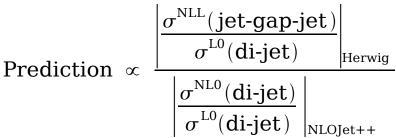
- Not perfomed before
- Study of the ratio

 $d\sigma/dE_{T}(all p)$ BFKL NLL all p / p=0 12 $\Delta \eta = 3$ $d\sigma/dE_{T}(p=0)$ Large contribution 10 for $\Delta \eta = 4$ x 4 – 8 ÷ x 1.5 – 2 for $\Delta \eta = 8$ **Ratio for BFKL-NLL** ÷ 8 Larger contribution at high E_{τ} and low $\Delta \eta$ æ $\Delta \eta = 4$ ÷ 6 _{የ የ የ} የ የ የ æ ∆η**=5** ዯ **Δη=6** 4 $\Delta \eta = 7$ **∆η=8 Δη=9** 2 ∆ŋ**=10** 20 40 60 80 100 120 140 Jet E_{τ} (GeV) p≠0 contributions are needed both at LL and NLL

Comparisons with DØ data

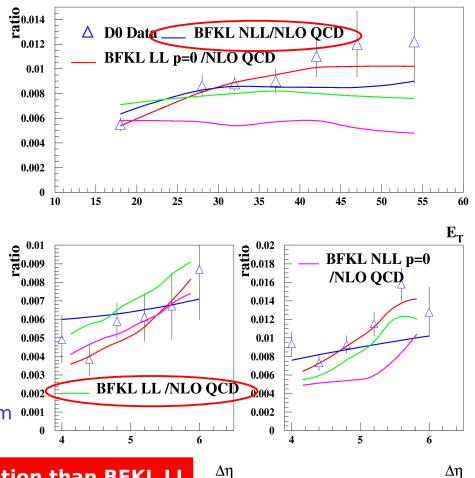
DØ measurements

- Fraction of di-jets events with gap Ratio of jet gap jet / Inclusive di-jet cross sections
- Data selection


Central gap between jets $\Delta \eta > 2$ with no significant energy

2 high E_{τ} jets in opposite forward regions $\frac{1}{2}$

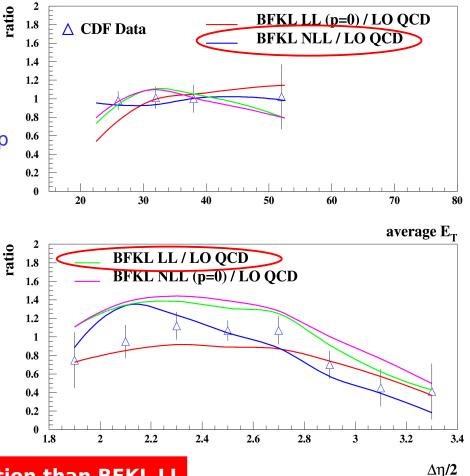
Predictions


Normalization is a free parameter

- Is adjusted to describe the data
- \rightarrow Compare the shape of distributions

Comparisons with BFKL formalism

- Good agreement with LL p=0 BFKL but p≠0 contributions are important
- Better description with BFKL NLL formalism



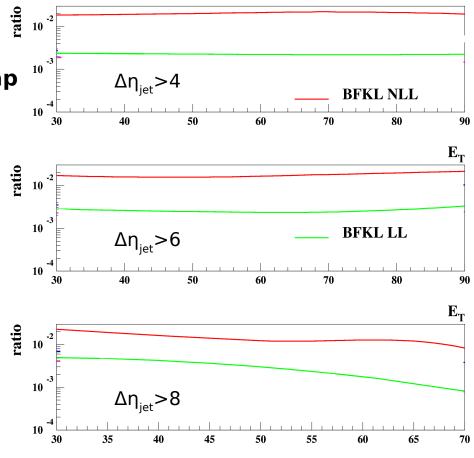
CDF measurements

- Same measurement as for DØ analysis
- Different selection cuts

Comparisons with BFKL formalism

• Better description using BFKL NLL with all p

BFKL NLL leads to a better description than BFKL LL


Predictions for LHC

Predictions

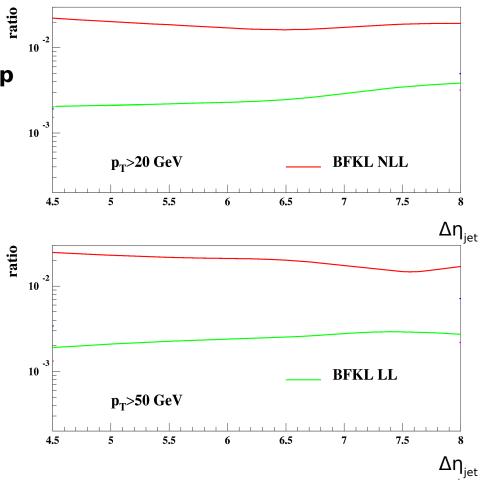
- Use the same BFKL NLL formalism in Herwig at LHC energies
- Gap survival probability for LHC
- Rapidity gap $-1 < \Delta \eta_{gap} < 1$

Fraction of di-jets events with gap

- Versus jet E_τ
- Versus jet Δη

Weak E_r dependence

Large differences in normalisation between BFKL LL and NLL predictions 17


Predictions for LHC

Predictions

- Use the same BFKL NLL formalism in Herwig at LHC energies
- Gap survival probability for LHC
- Rapidity gap $-1 < \Delta \eta < 1$

Fraction of di-jets events with gap

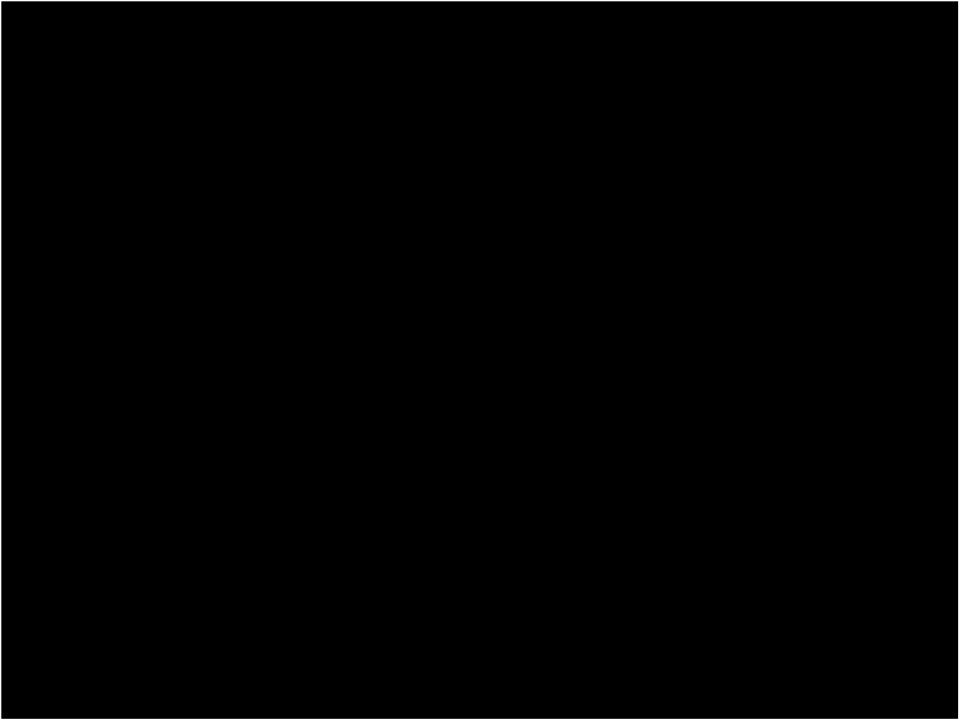
- Versus jet E_{T}
- Versus jet Δη

Weak **A**n dependence

Large differences in normalisation between BFKL LL and NLL predictions

Conclusion

First study of processes with the BFKL kernel at next-leading accuracy


Predictions obtained with the full analytic expression of the NLL-BFKL kernel Non-zero conformal spins have large contributions

BFKL NLL kernel fully implemented in HERWIG

Fundamental to compare with data (takes into account jet structure and jet size) → Provides meaningful predictions

Comparison with TeVatron data and prediction for LHC

Good agreement data/predictions Better agreement with NLL calculation than with full LL For LHC : large differences in normalisation/shape between LL and NLL → Effects of higher order terms in the di-jet cross-section have to be checked

