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Introduction.
Most of applications of Regge theory to high-
energy interactions are based on linear 
approximation for Regge-trajectories: 

This is natural in Regge theory as characteristic
are small and                          .

In this b-region linear approximation is valid.
Secondary Regge-trajectories (                     )

are approximately linear with universal slope.
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Spectrum of mesons



Linearity of the effective ρ-trajectory 
up to t ≈ -2 GeV² from . 0p nπ π− →



Introduction.
For pomeron, however, we do not have 
such information and                is known to 
be small (~ 0.1             ). In supercritical 
pomeron theory (                                 ) very 
large impact parameters 
are important (Froissart type behavior) and 
in this region an analytic structure of the P-
pole (existence of a branch point at             )
plays a vital role.              
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Introduction.
Several natural questions:
How large are                       and how they 
distort linearity of Regge trajectories?
How slopes of trajectories are related to 
characteristic scales?
How b-dependence of Regge amplitudes 
at large impact parameters is modified?
What can we learn about relative 
importance of perturbative versus 
nonperturbative effects from behavior of 
Regge-trajectories?
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Analytic properties of Regge poles.
It follows from t-channel unitarity that 
Regge poles have cuts related to 
production of real intermediate states.
For Regge poles with positive G-parity the 
lowest branch point is at                     and 
is due to            - exchange.
Contribution of the Regge
pole to the amplitude
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Imaginary parts of Regge-trajectories.
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V.N.Gribov,I.Ya.Pomeranchuk(1962)
where

Imaginary parts can be determined from widths of 
resonances (for small                 ) 
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Dispersion relations for Regge
trajectories.

If              is known it is possible to restore
using dispersion relations. It is 

important to know behavior of                   at
large     . Data indicate that  
and                            for                           .
Thus it is enough to make one substraction
(it is convenient to make it at t=0)
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Dispersion relations for Regge
trajectories

where              is the “bare” slope (without hadronic
loops). Dispersion integral gives an extra 
contribution to               :

It can be especially important for pomeron
(                is small).
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ρ- trajectory.

Model for                   .  
For t close to

Note that                           and

This behavior extrapolates well to region of  large t 
(reproduces widths of resonances on ρ- trajectory).
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ρ- trajectory.

In this approximation rho-trajectory can be 
written in a close form    A,A.Anselm,V.N.Gribov

(1972)
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ρ- trajectory.
For
Very small contribution of             to 
in the resonance region. Explains approximate 
linearity of secondary trajectories.
Some correction to the slope in the small t
region:
General consistency of the                with 
experimental data both for t>0 and t<0. 
Relation to the paper by R.Fiore et.al (2000)
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ρ- trajectory.



Pomeron trajectory.

For pomeron trajectory an information in
the resonance region is practically absent.
In the small t region:

I shall assume a validity of the dispersion 
relation with one substraction.
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Pomeron trajectory.

In this case 

Simple expression for                                         
A.A.Anselm,V.N.Gribov
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Pomeron trajectory.
Note a small numerical coefficient                .
As a result                                         is small (but 
important) even for the scale            .
The pomeron trajectory is strongly curved.
Another source of curvature for pomeron trajectory 
is mixing of singlet             and              -trajectories 
(due to crossing of trajectories).    

A.B.K.,Yu.A.Simonov (2000)
Transition from nonperturbative slope

at large t>0 to very small BFKL slope at large –t in   
AdS/CFT approach.         R,Brower et al (2006)
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Amplitudes of diffractive processes.

Single P-exchange with ∆ > 0 violates
unitarity:  
Multi-pomeron exchanges are necessary 
to restore unitarity.
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Unitarity effects in Gribov`s approach.
Consider PP-exchange
Amplitudes can be expressed
In terms of contributions of
diffractive intermediate states.



Radius of interaction in eikonal model.

Summation of nP-exchanges with
account of poles only leads to the eikonal
amplitudes
with iΩ -Fourier transform of TP(s,t).
For linear P-trajectory and gaussian form of the 
residue
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Radius of interaction and singularity in P-
trajectory.

Froissart type increase of the radius is a general
feature of supercritical P theory.

What happens in the limit ?     It is 
necessary to take into account the branch point
in P-trajectory at .

M.S.Dubovikov,
K.A.Ter-Martorosyan

(1977)
It is possible to neglect by the last term only in the 

region  
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Radius of interaction and singularity in P-
trajectory.

For

where

generic dependence on b at large b.
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Inelastic diffraction.

The singularity in the P-trajectory is 
especially important in amplitudes of 
inelastic diffraction, as impact parameters

are strongly suppressed.  In 
eikonal model the suppression is given by
the factor                            . 

Modification of                   at large b 
allows to resolve problems with unitarity in
inelastic diffraction.            A.B.K. (1979)
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Conclusions.
1. Unitarity cut plays a minor role for secondary

Regge trajectories and leads to a 
small deviation from linearity.

2. For pomeron the cut is important.
3. Pomeron trajectory has a strong curvature in 

the small t-region.
4. Singularity of the pomeron trajectory plays a 

vital role for supercritical pomeron and 
determines radius of interaction at superhigh
energies.

2( , , ,..)Aρ ω


	Analytic structure of Regge poles and high-energy interactions. 
	Contents
	Introduction.
	Spectrum of mesons
	Linearity of the effective ρ-trajectory �up to t ≈ -2 GeV² from                  . 
	Introduction.
	Introduction.
	Analytic properties of Regge poles.
	Imaginary parts of Regge-trajectories.
	Dispersion relations for Regge trajectories.
	Dispersion relations for Regge trajectories
	ρ- trajectory.
	ρ- trajectory.
	ρ- trajectory.
	ρ- trajectory.
	Pomeron trajectory.
	Pomeron trajectory.
	Pomeron trajectory.
	Amplitudes of diffractive processes.
	Unitarity effects in Gribov`s approach.
	Radius of interaction in eikonal model.
	Radius of interaction and singularity in P-trajectory.
	Radius of interaction and singularity in P-trajectory.
	Inelastic diffraction.
	Conclusions.

