

Forward Physics at ATLAS

Andrew Pilkington - The University of Manchester *Presented at the Low-x workshop, Ischia, 11th September 2009.*

Outline

- 1) Forward detectors at ATLAS
- 2) Early measurements with 2009/2010 data:
 - Hard and soft diffraction
 - Exclusive production
 - Forward Jets
- 3) Prospects for 2011 onwards

The ATLAS forward detector system

The ATLAS detector – η coverage

- Central detector consists of:
 - Inner tracking detector covering $|\eta|$ < 2.5.
 - Electromagnetic calorimeters covering $|\eta|$ < 3.2.
 - Hadronic calorimeters covering $|\eta|$ < 4.9.
 - Muon spectrometer covering $|\eta|$ < 2.7.

Possible LHC running scenario* (2009/2010)

- After commissioning at injection energy, collisions will take place at 3.5TeV per beam.
 - Current plan* is to take around 60pb⁻¹ of data in this initial stage.
 - In the region of 40% of this data will be taken with approximately 0.8 interactions per bunch crossing.
 - In the region of 60% with an average of 1.6 interactions per bunch crossing.
 - Pile-up removal will be important for empty 'rapidity gap' definitions.
- Energy can then be increased to between 4-5 TeV per beam*. Discussion ongoing as to whether this will take place sooner or later.
 - Number of interactions kept to around 2 per bunch crossing -> pile-up removal techniques as above.
 - Luminosity reaches around 2x10³²cm⁻²s⁻¹.
 - Approximately 250pb⁻¹ of data.

Soft diffraction

- Single and double diffractive dissociation have large cross section [O(mb)]
- First measurement of rapidity gap processes at LHC study of underlying event/soft survival. Impacts our understanding pile-up at high luminosity.

Soft diffraction (II)

- Rapidity gaps in the calorimeters, LUCID and ZDC used to infer an outgoing proton.
 - Diffractive mass, M_x, of the dissociative system measured and the fractional momentum loss of the (intact) proton defined:

$$\xi = \frac{\mathbf{M_X^2}}{\mathbf{s}}$$

- M_X measured using calorimeter clusters and tracking information.
- Events retained using the Minimum Bias Trigger Scintillators (MBTS).
 - The MBTS are rings of trigger scintillators covering 2.09< $|\eta|$ <3.84.
 - Expect millions of events for analysis.

Diffractive di-jet production

- Aim to measure:
 - Ratio of single diffractive (SD) di-jets to nondiffractive (ND) di-jets.
 - Ratio of double pomeron (DPE) to single diffractive di-jets; infer soft-survival effects.
 - Diffractive structure functions.
- Trigger using single jet triggers.
 - Examining use of LUCID, ZDC, MBTS for gap requirement.
- Expect a few thousand SD di-jet events in 100pb^{-1} with $E_T>20\text{GeV}$ (after trigger pre-scale and gap requirement).
- Expect approximately 10 DPE events in same kinematic region.

Central exclusive di-jet production

- Protons remain intact during interaction.
- Observable: Two jets and little extra hadronic activity.
- Allows study of theoretical framework, such as Sudakov effects and unintegrated PDFs.
- Constrain theoretical uncertainty (factor of 2-3).
- New Level 1 trigger strategy developed for analysis using jet plus gap; gap defined by empty MBTS on one side of ATLAS.
 - Un-prescaled at L=10³¹cm⁻² s⁻¹.
 - Expect a few hundred CEP events after trigger and analysis cuts with E_T>20GeV in 20pb⁻¹ of data.
- Trigger can also be used to retain a large statistics sample of low-ξ single diffractive dijet events.

Exclusive TT production

- Exclusive ττ production has a small theoretical uncertainty (<1%).
 - Cross section prediction (LPAIR) is 3pb (elastic + inelastic) for $p_{\tau}(tau) > 10$ GeV.
 - From offline selection, expect around 100 events in 100pb⁻¹
 - Events triggered using
 - (a) single lepton trigger and
 - (b) (b) jet + gap trigger used in exclusive di-jet study.

Forward jet studies (I)

- Di-jet systems in which the jets are separated by at least 3 units of pseudo-rapidity.
- Two processes contribute:
 - Gluon (or quark) exchange between partonic 2->2 scatters (dominant).
 - Hard colour singlet (BFKL gluon ladder) exchange. Up to 10% of di-jet cross section.
- ATLAS measurements will focus on both inclusive measurements and those in which radiation between the jets is limited.
- Calorimeters give a lever arm of up to 9 units in jet-rapidity separation, when using jets with radius parameter set to 0.4.

Forward Jets (II) – Azimuthal de-correlation

- Di-jets are back-to-back in azimuth, $\Delta \varphi = \pi$, for leading order 2->2 scattering.
- Additional radiation means that $\Delta \phi < \pi$
- De-correlation depends on E_T of the additional radiation.
- Theoretical predictions can be made for this de-correlation using fixed order (NLO), parton shower and BFKL.
- For 1-5pb⁻¹, expect very early measurement for $|\eta| < 2.5$.
- Observation of any BFKL effects at large $\Delta\eta$ will probably require more than 100pb^{-1} of data.

Gaps-between-jets (I) – wide angle gluon radiation

- Gaps-between-jets events identified by vetoing on additional radiation between the two leading jets.
- Infrared safe veto definition needed, such as E_T of veto-jet or ΣE_T in calorimeter.
- Observable of interest is the gap-fraction, i.e. the ratio of gap-events to inclusive di-jet events as a function of leading jet E_T and separation of jets.
- Moderately separated jets sensitive to higher order QCD effects, such as differences between parton shower and matrix element generators (left), Glauber-Coulomb gluons (right) etc.

Gaps-between-jets (II) – hard colour singlet exchange

- For large jet pseudo-rapidity separation, colour singlet exchange starts to become increasingly important:
 - Two leading jets identified (E_{τ} >30GeV).
 - Gap events defined (in this case) using the H1 methodology, by summing the transverse energy between leading jets, i.e E_T^{gap} < 10GeV .

Generator level

- Expect CSE events to have $E_t^{gap} \approx 0$.
 - But get many events with higher values due to multiple parton-parton interactions.
 - Measurement should be possible with around 10pb⁻¹ of data.
 - BFKL predicts a rise in the gap fraction due to hard colour singlet exchange.

- ALFA can be used during special 'luminosity' runs to measure soft-SD proton spectrum.
- Hits in LUCID and energy in ZDC are used to tag the diffractive dissociation.
- Proton tag in ALFA measure proton ξ.
- 1.2-1.8 million events with 100hrs at $L=10^{27}$ cm⁻²s⁻¹.
- BUT, ALFA requires special running conditions.

Efficiency [%]	Pythia	Phojet
Preselection		
ξ<0.2	97.1	94.8
ZDC [E>1 TeV]	53.9	38.7
LUCID [1 track]	45.2	57.3
Total preselection	75	74
RP selection		
ALFA (Relative to preselection)	60.1	54.2
Total acceptance	45.0	40.1

• Want to measure the diffractive ξ distribution:

$$\xi = 1 - \frac{|p_z'|}{|p_z|}$$

- p_z= beam momentum
- $p_7' = outgoing proton momentum$

The ATLAS Forward Proton project

- AFP project proposes to install new detectors at 220m and 420 either side of IP.
- Main aim: To detect both protons from exclusive interactions up to L=10³⁴cm⁻² s⁻¹.
- SUSY, Higgs, BSM physics, plus wide range of QED and QCD possible
- Resonance mass measured regardless of decay channel.
- See detailed talk by M. Tasevsky.

Summary

2009/2010 measurements with up to 10pb⁻¹:

- 1) Soft single and double diffraction.
- 2) Forward jet azimuthal de-correlations up to moderate $\Delta \eta$.
- 3) Gaps-between-jets.

2009/2010 measurements with up to 200pb⁻¹:

- 1) Exclusive di-jet and di-tau production.
- 2) Single diffractive di-jet production.
- 3) Extended phase space for forward jet studies.

Prospects after 2010:

- 1) Single diffraction (and elastic scattering) with ALFA.
- 2) New physics studies if AFP is installed.