François Gelis

QCD at small-x in nucleus-nucleus collisions

Low-x meeting, Ischia, September 2009

François Gelis IPhT, CEA/Saclay ____

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions Short range correlations Pomeron splittings

Conclusions

Outline

1 Introduction

2 Multi-gluon correlations

3 Dilute limit

Collaborators:

T. Lappi (Jyvaskyla) A. Dumitru (Baruch College)

R. Venugopalan (BNL) L. McLerran (BNL)

François Gelis

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions Short range correlations

Pomeron splittings

Conclusions

François Gelis

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

Ø Multi-gluon correlations

Power counting Single gluon spectrum at LO Leading Log factorization Multi-gluon correlations

Oilute limit

Short range correlations at LO Pomeron splittings

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

AA collisions

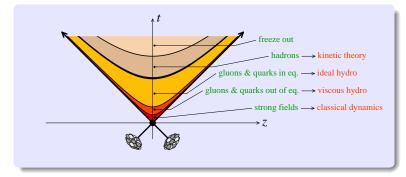
Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions

Short range correlations Pomeron splittings

Conclusions

Stages of a nucleus-nucleus collision



François Gelis

Introduction Hydrodynamics

 $\begin{array}{l} \text{Correlations at large } \Delta \mathbf{Y} \\ \text{Color Glass Condensate} \end{array}$

AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions Short range correlations Pomeron splittings

Conclusions

Extra bits

- The Color Glass Condensate provides a framework to describe nucleus-nucleus collisions up to a time $\tau \sim {\rm Q_s^{-1}}$

Reminder on hydrodynamics

Equations of hydrodynamics :

 $\partial_{\mu}T^{\mu\nu} = 0$ (energy-momentum conservation) $\partial_{\mu}J^{\mu}_{R} = 0$ (baryon number conservation)

- These equations contain only first order time derivatives
- Required initial conditions :

 $T^{\mu
u}(au= au_0,\eta,ec{m{x}}_{\perp}),\, J^{\mu}_{\scriptscriptstyle
m B}(au= au_0,\eta,ec{m{x}}_{\perp})$

Additional inputs :

Equation of state: Transport coefficients:

$$\boldsymbol{p} = \boldsymbol{f}(\boldsymbol{\epsilon})$$
$$\boldsymbol{\eta}, \boldsymbol{\zeta}, \cdots$$

François Gelis

Introduction Hydrodynamics

Correlations at large ΔY Color Glass Condensate

AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions

Short range correlations Pomeron splittings

Conclusions

Initial correlations and hydrodynamics

 The equations of hydrodynamics are non-linear. Therefore, solving hydro evolution for event averaged initial conditions is not the same as solving hydro event-by-event, and averaging observables at the end :

$$\mathrm{HYDRO}\left[\left\langle \mathcal{T}_{\mathrm{init}}^{\mu\nu}\right\rangle\right] \neq \left\langle \mathrm{HYDRO}\left[\mathcal{T}_{\mathrm{init}}^{\mu\nu}\right]\right\rangle$$

- To study hydrodynamics event by event, one needs an event generator for T^{μν}(τ₀, η, **x**_⊥)
- To achieve this, it is not sufficient to know the average $\langle T^{\mu\nu}(\tau_0, \eta, \vec{x}_{\perp}) \rangle$. We also need correlations :

$$\left\langle T^{\mu_{1}\nu_{1}}(\tau_{0},\eta_{1},\vec{\mathbf{x}}_{1\perp})T^{\mu_{2}\nu_{2}}(\tau_{0},\eta_{2},\vec{\mathbf{x}}_{2\perp})\right\rangle \\ \left\langle T^{\mu_{1}\nu_{1}}(\tau_{0},\eta_{1},\vec{\mathbf{x}}_{1\perp})T^{\mu_{2}\nu_{2}}(\tau_{0},\eta_{2},\vec{\mathbf{x}}_{2\perp})T^{\mu_{3}\nu_{3}}(\tau_{0},\eta_{3},\vec{\mathbf{x}}_{3\perp})\right\rangle \\ \cdots$$

François Gelis

Introduction Hydrodynamics

Correlations at large ΔY Color Glass Condensate

AA collisions

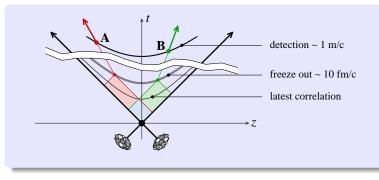
Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

```
pA and pp collisions
```

Short range correlations Pomeron splittings

Conclusions

Long range rapidity correlations probe early dynamics



François Gelis

Introduction Hydrodynamics Correlations at large ∆Y Color Glass Condensate

AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions Short range correlations Pomeron splittings

Conclusions

Extra bits

Long range rapidity correlations are created early

From causality, the latest time at which a correlation between two particles can be created is :

$$t_{\text{correlation}} \leq t_{\text{freeze out}} e^{-\frac{1}{2}|y_A - y_B|}$$

Example: $t_{\text{freeze out}} = 10 \text{ fm/c}, |y_A - y_B| = 6$: $t_{\text{correlation}} \le 0.5 \text{ fm/c}$

Effective degrees of freedom

McLerran, Venugopalan (1994)

The fast partons (large x > x₀) are frozen by time dilation
 ▷ described as static color sources on the light-cone :

$$J^{\mu} = \delta^{\mu+} \rho(\mathbf{x}^{-}, \mathbf{\vec{x}}_{\perp}) \qquad (\mathbf{x}^{-} \equiv (t-z)/\sqrt{2})$$

Note: $\rho(\mathbf{x}^{-}, \mathbf{\vec{x}}_{\perp}) \propto \delta(\mathbf{x}^{-})$

- Slow partons (small *x* < *x*₀) are not static over the time-scales of the collision process
 ▷ must be treated as the usual gauge fields
 ▷ coupled to the current *J^µ* by a term : *J^µA_µ*
- The color sources ρ are random, with a distribution $W_{\gamma}[\rho]$ ($Y \equiv \ln(1/x_0)$ is the rapidity separating "slow" and "fast")

François Gelis

Introduction Hydrodynamics

Correlations at large ΔY Color Glass Condensate

AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions Short range correlations Pomeron splittings

Conclusions

Parton evolution

Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner (1997-2001), Blaizot, Iancu, Weigert (2002)

Renormalization group equation (JIMWLK) :

$$\begin{aligned} \frac{\partial \boldsymbol{W}_{\boldsymbol{y}}}{\partial \boldsymbol{Y}} &= \mathcal{H} \ \boldsymbol{W}_{\boldsymbol{y}} \\ \mathcal{H} &= \frac{1}{2} \int\limits_{\boldsymbol{\vec{x}}_{\perp}, \boldsymbol{\vec{y}}_{\perp}} \frac{\delta}{\delta \mathcal{A}^{+}(\boldsymbol{\epsilon}, \boldsymbol{\vec{y}}_{\perp})} \eta(\boldsymbol{\vec{x}}_{\perp}, \boldsymbol{\vec{y}}_{\perp}) \frac{\delta}{\delta \mathcal{A}^{+}(\boldsymbol{\epsilon}, \boldsymbol{\vec{x}}_{\perp})} \end{aligned}$$

$$(-\partial_{\perp}^2 \, \mathcal{A}^+(\epsilon, \vec{x}_{\perp}) =
ho(\epsilon, \vec{x}_{\perp}) \quad, \quad \epsilon \sim 1/x_0)$$

- $\eta(\vec{x}_{\perp}, \vec{y}_{\perp})$: non-linear functional of ρ
- Resums all the powers of $\alpha_s \ln(1/x)$
- Diffusion in the space of mappings $\{\mathbb{R}^2 \mapsto SU(3)\}$:

François Gelis

Introduction Hydrodynamics Correlations at large ΔΥ Color Glass Condensate

AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions Short range correlations Pomeron splittings

Conclusions

François Gelis

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

2 Multi-gluon correlations

Power counting Single gluon spectrum at LO Leading Log factorization Multi-gluon correlations

3 Dilute limit

Short range correlations at LO Pomeron splittings

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

AA collision

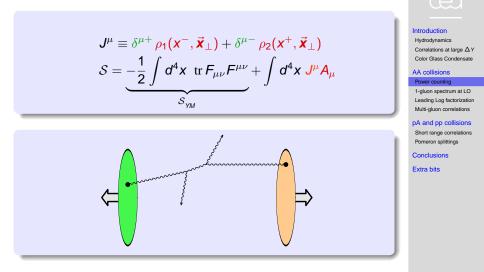
Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions

Short range correlations Pomeron splittings

Conclusions

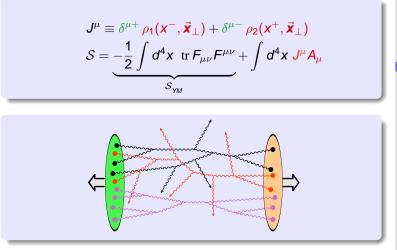
Power counting



Dilute regime : one parton in each projectile interact

François Gelis

Power counting



- Dilute regime : one parton in each projectile interact
- Dense regime : multiparton processes become crucial

François Gelis

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

AA collisions

Power counting

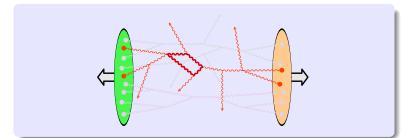
1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions

Short range correlations Pomeron splittings

Conclusions

Power counting



- In the saturated regime, the sources are of order 1/g(because $\langle \rho \rho \rangle \sim$ occupation number $\sim 1/\alpha_s$)
- Order of a connected diagram :

$$\frac{1}{g^2} g^{\# \text{ produced gluons}} g^{2(\# \text{ loops})}$$

François Gelis

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

AA collisions

Power counting

1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

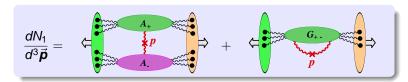
pA and pp collisions

Short range correlations Pomeron splittings

Conclusions

Diagrammatic expansion of dN_1/d^3p

• The single inclusive spectrum has a simple diagrammatic representation :



- There are only connected graphs (AGK cancellation)
- Perturbative expansion in the saturated regime :

$$\frac{dN_1}{d^3\vec{p}} = \frac{1}{g^2} \left[\underbrace{c_0}_{\text{LO}} + \underbrace{c_1 \ g^2}_{\text{NLO}} + \underbrace{c_2 \ g^4}_{\text{NNLO}} + \cdots \right]$$

François Gelis

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions Short range correlations Pomeron splittings

Conclusions

Expression in terms of classical fields at LO

Gluon spectrum at LO :

$$\left.\frac{dN_1}{d^3\vec{\pmb{p}}}\right|_{\scriptscriptstyle \rm LO} \propto \int_{x,y} e^{i\rho\cdot(x-y)} \Box_x \Box_y \sum_{\lambda} \epsilon_{\mu}^{(\lambda)} \epsilon_{\nu}^{(\lambda)} \mathcal{A}^{\mu}(x) \mathcal{A}^{\nu}(y)$$

•
$$\mathcal A$$
 obeys the classical EOM : $rac{\delta \mathcal S_{_{YM}}}{\delta \mathcal A} + oldsymbol J = 0$

• The boundary conditions are very simple:

$$\lim_{x^0\to-\infty}\mathcal{A}(x)=0$$

François Gelis

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions Short range correlations

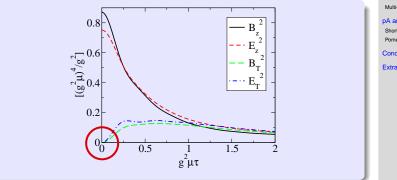
Pomeron splittings

Conclusions

Initial classical fields

Lappi, McLerran (2006)

• Immediately after the collision, the chromo- \vec{E} and \vec{B} fields are purely longitudinal :



Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

AA collisions

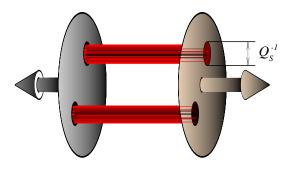
Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions Short range correlations Pomeron splittings

Conclusions

Initial classical fields

• The initial chromo- \vec{E} and \vec{B} fields form longitudinal "flux tubes" extending between the projectiles:



François Gelis

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions Short range correlations Pomeron splittings

Conclusions

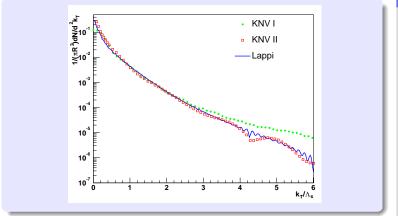
Extra bits

The color correlation length in the transverse plane is Q_s⁻¹
 ▷ flux tubes of diameter Q_s⁻¹, filling up the transverse area

Single gluon spectrum at LO

Krasnitz, Nara, Venugopalan (1999 – 2001), Lappi (2003)

• No analytic solution for the Yang-Mills equations, but straightforward numerically



François Gelis

Introduction

Hydrodynamics $\begin{array}{l} \mbox{Correlations at large } \Delta \, \mbox{Y} \\ \mbox{Color Glass Condensate} \end{array}$

AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions Short range correlations Pomeron splittings

Conclusions

What is factorization ?

• The naive perturbative expansion of $dN_1/d^3\vec{p}$,

$$\frac{dN}{d^{3}\vec{p}} = \frac{1}{g^{2}} \left[c_{0} + c_{1} g^{2} + c_{2} g^{4} + \cdots \right],$$

assumes that the coefficients c_n are of order one

• This assumption is upset by large logarithms of $1/x_{1,2}$:

$$c_{1} = d_{10} + d_{11} \ln\left(\frac{1}{x_{1,2}}\right)$$

$$c_{2} = d_{20} + d_{21} \ln\left(\frac{1}{x_{1,2}}\right) + \underbrace{d_{22} \ln^{2}\left(\frac{1}{x_{1,2}}\right)}_{\text{Leading Log terms}}$$

 Factorizability: the logarithms must be universal and resummable into functionals that depend only on the projectiles being collided

Introduction

Hydrodynamics $\mbox{Correlations at large } \Delta \mbox{Y} \\ \mbox{Color Glass Condensate}$

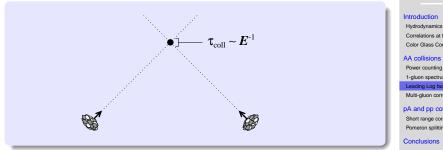
AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

```
pA and pp collisions
Short range correlations
Pomeron splittings
```

Conclusions

Why factorization works: causality



• The duration of the collision is very short: $\tau_{\rm coll} \sim E^{-1}$

François Gelis

Introduction

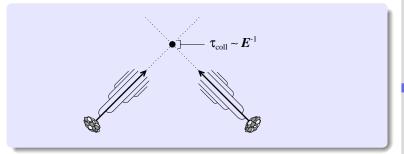
Hydrodynamics Correlations at large ΔY Color Glass Condensate

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions Short range correlations Pomeron splittings

Conclusions

Why factorization works: causality



- The duration of the collision is very short: $au_{
 m coll} \sim E^{-1}$
- The logarithms we want to resum arise from the radiation of soft gluons, which takes a long time
 ▷ it must happen (long) before the collision

François Gelis

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

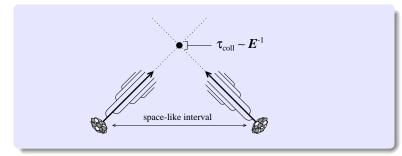
AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions Short range correlations Pomeron splittings

Conclusions

Why factorization works: causality



- The duration of the collision is very short: $\tau_{\rm coll} \sim E^{-1}$
- The logarithms we want to resum arise from the radiation of soft gluons, which takes a long time
 it must happen (long) before the collision
- The projectiles are not in causal contact before the impact
 b the logarithms are intrinsic properties of the projectiles, independent of the measured observable

François Gelis

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

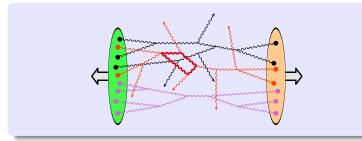
AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions Short range correlations Pomeron splittings

Conclusions

Why the proof is complicated: strong fields



- Procedure: (i) calculate the 1-loop corrections, (ii) disentangle the logarithms from the finite contributions, (iii) show that the logs can be assigned to the projectiles
- Problem: strong fields, analytic calculation not feasible

▷ Take advantage of the retarded nature of the boundary conditions in order to separate the initial state evolution (calculable analytically) from the collision itself (hopeless)

François Gelis

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions Short range correlations Pomeron splittings

Conclusions

Factorization in two steps: FG, Lappi, Venugopalan (2008)

L: The NLO gluon spectrum can be written as a perturbation of the initial value of the classical fields on the light-cone :

$$\frac{dN_{1}}{d^{3}\vec{\boldsymbol{\rho}}}\Big|_{_{\mathrm{NLO}}} = \left[\frac{1}{2}\int_{\vec{\boldsymbol{u}},\vec{\boldsymbol{v}}\in\mathrm{LC}}\mathcal{G}(\vec{\boldsymbol{u}},\vec{\boldsymbol{v}}) \mathbb{T}_{\boldsymbol{u}}\mathbb{T}_{\boldsymbol{v}} + \int_{\vec{\boldsymbol{u}}\in\mathrm{LC}}\beta(\vec{\boldsymbol{u}})\mathbb{T}_{\boldsymbol{u}}\right] \frac{dN_{1}}{d^{3}\vec{\boldsymbol{\rho}}}\Big|_{_{\mathrm{LO}}}$$
$$\mathbb{T}_{\boldsymbol{u}} \sim \delta/\delta\mathcal{A}_{\mathrm{initial}}(\boldsymbol{u}) \quad , \quad \mathcal{G},\beta \text{ are calculable analytically}$$

II : The operator $[\cdots]$ is related to the JIMWLK Hamiltonian:

$$\frac{1}{2} \int \mathcal{G}(\vec{u}, \vec{v}) \mathbb{T}_{u} \mathbb{T}_{v} + \int \beta(\vec{u}) \mathbb{T}_{u} = \log\left(\frac{\Lambda^{+}}{\rho^{+}}\right) \times \mathcal{H}_{1} + \log\left(\frac{\Lambda^{-}}{\rho^{-}}\right) \times \mathcal{H}_{2}$$

$$\overset{\vec{u}, \vec{v} \in LC}{\overset{\vec{u}}{\leftarrow} LC} + \text{ finite terms}$$

Factorization follows easily

(]

21

François Gelis

Introduction

Hydrodynamics

Correlations at large Δ Y Color Glass Condensate AA collisions Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations pA and pp collisions

Short range correlations Pomeron splittings Conclusions Extra bits

Leading Log factorization

 By averaging over all the configurations of the sources in the two projectiles, we get a factorized formula for the resummation of the leading log terms to all orders :

$$\begin{split} \left\langle \frac{dN_1}{d^3 \vec{p}} \right\rangle_{\text{LLog}} &= \int \left[D\rho_1 \ D\rho_2 \right] \ W_{\text{Y}_1}[\rho_1] \ W_{\text{Y}_2}[\rho_2] \ \frac{dN_1}{d^3 \vec{p}} \bigg|_{\text{LO}} \\ \text{with} : \ \frac{\partial}{\partial Y} W_{\text{Y}} &= \mathcal{H} \ W \ , \quad \text{Y}_1 = \log(\sqrt{s}/p^+) \ , \quad \text{Y}_2 = \log(\sqrt{s}/p^-) \end{split}$$

• The distributions *W*[*p*_{1,2}] must be evolved up to the rapidity of the produced gluon

François Gelis

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

```
pA and pp collisions
Short range correlations
Pomeron splittings
```

Conclusions

Multigluon spectrum at LO

FG, Lappi, Venugopalan (2008)

 In the saturated regime, the inclusive n-gluon spectrum at Leading Order is the product of n 1-gluon spectra:

$$\frac{dN_n}{d^3\vec{\boldsymbol{p}}_1\cdots d^3\vec{\boldsymbol{p}}_n}\bigg|_{LO}=\left.\frac{dN_1}{d^3\vec{\boldsymbol{p}}_1}\right|_{LO}\times\cdots\times\left.\frac{dN_1}{d^3\vec{\boldsymbol{p}}_n}\right|_{LO}$$

- At LO, in a given configuration of the sources ρ_{1,2}, the n gluons are not correlated
- Note: this is true for the bulk ($p_{\perp} \lesssim Q_s$), but not for the tail of the distribution

François Gelis

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

```
pA and pp collisions
Short range correlations
Pomeron splittings
```

Conclusions

Multigluon spectrum at NLO

• At NLO, one has again:

$$\frac{dN_n}{d^3\vec{p}_1\cdots d^3\vec{p}_n}\Big|_{_{\rm NLO}} = \left[\frac{1}{2}\int\limits_{\vec{u},\vec{v}\in LC}\mathcal{G}(\vec{u},\vec{v})\mathbb{T}_u\mathbb{T}_v + \int\limits_{\vec{u}\in LC}\mathcal{G}(\vec{u})\mathbb{T}_u\right] \frac{dN_n}{d^3\vec{p}_1\cdots d^3\vec{p}_n}\Big|_{_{\rm LC}}$$

- Correlations appear at NLO thanks to the operator $\mathcal{G}(\vec{u}, \vec{v}) \mathbb{T}_{u} \mathbb{T}_{v}$, which can link two different gluons
- Thanks to their universal structure, we can factorize these correlations into the distributions W[ρ_{1,2}]

François Gelis

Introduction Hydrodynamics Correlations at large ΔY Color Glass Condensate AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions Short range correlations Pomeron splittings

Conclusions

Leading Log factorization

Factorization formula for the *n*-gluon spectrum

$$\left\langle \frac{dN_n}{d^3 \vec{\boldsymbol{p}}_1 \cdots d^3 \vec{\boldsymbol{p}}_n} \right\rangle_{\text{LLog}} = \int \left[D\rho_1 \ D\rho_2 \right] \ W[\rho_1] \ W[\rho_2]$$
$$\times \frac{dN_1}{d^3 \vec{\boldsymbol{p}}_1} \bigg|_{\text{LO}} \times \cdots \times \left. \frac{dN_1}{d^3 \vec{\boldsymbol{p}}_n} \right|_{\text{LO}}$$

- This formula tells us that (in the Leading Log approximation) all the correlations arise from the W[ρ]'s
 ▷ they pre-exist in the wave-function of the projectiles
- Note: some short range correlations will also arise from splittings in the final state (not taken into account here, because does not come with a ln(s))

François Gelis

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions Short range correlations Pomeron splittings

Conclusions

François Gelis

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

Ø Multi-gluon correlations

Power counting Single gluon spectrum at LO Leading Log factorization Multi-gluon correlations

3 Dilute limit

Short range correlations at LO Pomeron splittings

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

AA collisions

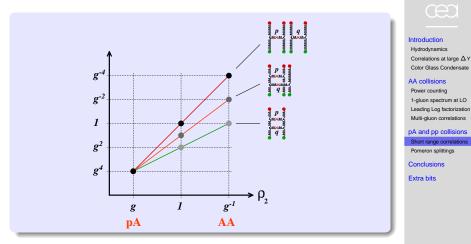
Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

A and pp collisions

Short range correlations Pomeron splittings

Conclusions

Contributions to the 2-gluon spectrum when $\rho_2 \rightarrow g$



- Only the disconnected graph contributes when $ho_2 \sim g^{-1}$
- Some connected graphs become important when ρ₂ ~ g
 ⊳ short range correlations between the two gluons (in a fixed configuration of ρ_{1,2})

François Gelis

Pomeron splittings

- In additions to modifications of the pattern of local correlations (visible at LO), the power counting allows new contributions in the leading logarithmic corrections
- The dilute limit of the JIMWLK Hamiltonian is

$$\mathcal{H} \quad {}_{
ho
ightarrow {f g}} \quad {f g}^2
ho^2 \left({\delta \over \delta
ho}
ight)^2 \sim {f g}^2$$

Note: this operator preserves the number of ρ 's

If $ho \sim g$, ho-number-changing operators have the same order

$$g^n \rho^2 \left(rac{\delta}{\delta
ho}
ight)^n \sim g^2$$

Note: if $\rho \gg g$, the operators with n > 2 are suppressed

• These new operators correspond to Pomeron splittings (when evolving away from the fragmentation region)

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

```
pA and pp collisions
Short range correlations
Pomeron splittings
```

Conclusions

Summary

- In the saturated regime, the correlations that affect the bulk of particle production all come via the evolution of the initial state prior to the collision:
 - long range rapidity correlations ($\Delta Y \sim \alpha_s^{-1}$)
 - provide a natural explanation for the ridge (R. Venugopalan), and for the fact that the multiplicity distribution is a negative binomial (L. McLerran)
- Correlations are more complicated in the dilute regime:
 - short range correlations become important
 - initial state evolution now sensitive to pomeron splittings
- The "dilute limit" is applicable to several situations:
 - collisions involving a small, non saturated, projectile
 - production of high-pt particles in AA collisions

François Gelis

œ

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

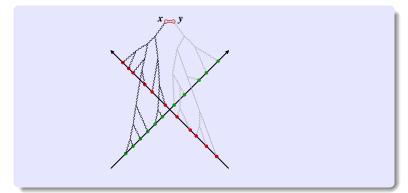
pA and pp collisions

Short range correlations Pomeron splittings

Conclusions

Expression in terms of classical fields at LO

· Classical fields are sums of tree diagrams :



François Gelis

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions Short range correlations Pomeron splittings

Conclusions

Expression in terms of classical fields at LO

· Classical fields are sums of tree diagrams :



François Gelis

Introduction Hydrodynamics Correlations at large ΔY Color Glass Condensate

AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions Short range correlations Pomeron splittings

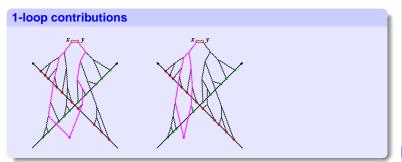
Conclusions

Extra bits

• Note : thanks to the retarded boundary conditions, the gluon spectrum is a functional of the value of the classical field on some initial Cauchy surface :

$$\left.\frac{dN_1}{d^3\vec{\boldsymbol{\rho}}}\right|_{\rm LO}=\mathsf{F}[\mathcal{A}_{\rm initial}]$$

Single gluon spectrum at NLO



François Gelis

Introduction

Hydrodynamics Correlations at large $\Delta \, \text{Y}$ Color Glass Condensate

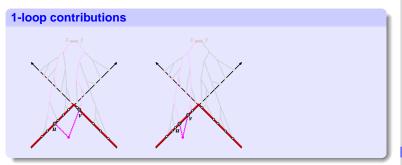
AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions Short range correlations Pomeron splittings

Conclusions

Single gluon spectrum at NLO



• Can be written as a perturbation of the LC initial fields :

$$\frac{dN}{d^{3}\vec{\boldsymbol{p}}}\Big|_{_{\rm NLO}} = \left[\frac{1}{2}\int\limits_{_{\vec{\boldsymbol{u}},\vec{\boldsymbol{v}}\in LC}} \mathcal{G}(\vec{\boldsymbol{u}},\vec{\boldsymbol{v}}) \,\mathbb{T}_{\boldsymbol{u}}\mathbb{T}_{\boldsymbol{v}}\right] \left.\frac{dN}{d^{3}\vec{\boldsymbol{p}}}\right|_{_{\rm LO}}$$

François Gelis

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions Short range correlations Pomeron splittings

Conclusions

Single gluon spectrum at NLO

1-loop contributions

• The loop correction can also be below the light-cone :

$$\frac{dN}{d^{3}\vec{\boldsymbol{\rho}}}\Big|_{_{\rm NLO}} = \left[\frac{1}{2}\int_{_{\vec{\boldsymbol{u}},\vec{\boldsymbol{v}}\in\rm LC}}\mathcal{G}(\vec{\boldsymbol{u}},\vec{\boldsymbol{v}})\mathbb{T}_{\boldsymbol{u}}\mathbb{T}_{\boldsymbol{v}} + \int_{_{\vec{\boldsymbol{u}}\in\rm LC}}\mathcal{G}(\vec{\boldsymbol{u}})\mathbb{T}_{\boldsymbol{u}}\right] \frac{dN}{d^{3}\vec{\boldsymbol{\rho}}}\Big|_{_{\rm LO}}$$

François Gelis

Introduction

Hydrodynamics Correlations at large ΔY Color Glass Condensate

AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions Short range correlations Pomeron splittings

Conclusions

Contributions to the 2-gluon spectrum when $ho_2 ightarrow g$

In the limit
$$\rho_2 \to g$$
$$\frac{dN_2}{d^3 \vec{\boldsymbol{p}} d^3 \vec{\boldsymbol{q}}} \bigg|_{_{\mathrm{LO}}} \propto \frac{1}{\left| \vec{\boldsymbol{p}} \right| \left| \vec{\boldsymbol{q}} \right|} \left| \mathcal{A}^{(+)}(\vec{\boldsymbol{p}}) \mathcal{A}^{(+)}(\vec{\boldsymbol{q}}) + \Sigma^{(+)}(\vec{\boldsymbol{p}}, \vec{\boldsymbol{q}}) \right|^2$$

$$\begin{array}{lll} \mathcal{A}^{(+)}(\vec{\boldsymbol{\rho}}) & = & \int d^4 x \; e^{i p \cdot x} \; \Box_x \; \mathcal{A}(x) \\ 0 & = & \frac{\delta \mathcal{S}_{_{\mathrm{YM}}}}{\delta \mathcal{A}} + J \;, \quad \lim_{x^0 \to -\infty} \mathcal{A}(x) = 0 \end{array}$$

$$\begin{split} \Sigma^{(+)}(\vec{\boldsymbol{p}},\vec{\boldsymbol{q}}) &= \frac{1}{2} \int_{\vec{k}} \left(a^{(+)}_{+\boldsymbol{k}}(\vec{\boldsymbol{p}}) a^{(+)}_{-\boldsymbol{k}}(\vec{\boldsymbol{q}}) + \vec{\boldsymbol{p}} \leftrightarrow \vec{\boldsymbol{q}} \right) \\ a^{(+)}_{\pm\boldsymbol{k}}(\vec{\boldsymbol{p}}) &= \int d^4x \; e^{i\boldsymbol{p}\cdot\boldsymbol{x}} \; \Box_x \; a_{\pm\boldsymbol{k}}(x) \\ 0 &= \left[\Box_x + \frac{\delta^2 \mathcal{S}_{_{\rm YM}}}{\delta \mathcal{A}^2} \right] a_{\pm\boldsymbol{k}} \;, \quad \lim_{x^0 \to -\infty} a_{\pm\boldsymbol{k}}(x) = e^{\pm i\boldsymbol{k}\cdot\boldsymbol{x}} \end{split}$$

François Gelis

Introduction

Hydrodynamics Correlations at large $\Delta \, \text{Y}$ Color Glass Condensate

AA collisions

Power counting 1-gluon spectrum at LO Leading Log factorization Multi-gluon correlations

pA and pp collisions

Short range correlations Pomeron splittings

Conclusions