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Stages of a nucleus-nucleus collision

z 

t

strong fields classical dynamics

gluons & quarks out of eq. viscous hydro

gluons & quarks in eq. ideal hydro

hadrons kinetic theory

freeze out

• The Color Glass Condensate provides a framework to
describe nucleus-nucleus collisions up to a time τ ∼ Q−1

s
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Reminder on hydrodynamics

Equations of hydrodynamics :

∂µT µν = 0 (energy-momentum conservation)

∂µJµ
B

= 0 (baryon number conservation)

• These equations contain only first order time derivatives

• Required initial conditions :

T µν(τ = τ0, η, ~x⊥), Jµ
B
(τ = τ0, η, ~x⊥)

Additional inputs :

Equation of state: p = f (ǫ)

Transport coefficients: η, ζ, · · ·
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Initial correlations and hydrodynamics

• The equations of hydrodynamics are non-linear.
Therefore, solving hydro evolution for event averaged
initial conditions is not the same as solving hydro
event-by-event, and averaging observables at the end :

HYDRO
[〈

T µν
init

〉]

6=
〈

HYDRO
[

T µν
init

]〉

• To study hydrodynamics event by event, one needs an
event generator for T µν(τ0, η, ~x⊥)

• To achieve this, it is not sufficient to know the average
〈

T µν(τ0, η, ~x⊥)
〉

. We also need correlations :

〈

T µ1ν1(τ0, η1, ~x1⊥)T µ2ν2(τ0, η2, ~x2⊥)
〉

〈

T µ1ν1(τ0, η1, ~x1⊥)T µ2ν2(τ0, η2, ~x2⊥)T µ3ν3(τ0, η3, ~x3⊥)
〉

· · ·
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Long range rapidity correlations probe early dynamics

detection ∼  1 m/c

freeze out ∼  10 fm/c

latest correlation

A
B

z 

t

Long range rapidity correlations are created early

From causality, the latest time at which a correlation between
two particles can be created is :

tcorrelation ≤ tfreeze out e− 1
2 |yA−yB |

Example: tfreeze out = 10 fm/c, |yA − yB | = 6 : tcorrelation ≤ 0.5 fm/c
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Effective degrees of freedom

McLerran, Venugopalan (1994)

• The fast partons (large x > x0) are frozen by time dilation
⊲ described as static color sources on the light-cone :

Jµ = δµ+ρ(x−, ~x⊥) (x− ≡ (t − z)/
√

2)

Note: ρ(x−, ~x⊥) ∝ δ(x−)

• Slow partons (small x < x0) are not static over the
time-scales of the collision process
⊲ must be treated as the usual gauge fields
⊲ coupled to the current Jµ by a term : JµAµ

• The color sources ρ are random, with a distribution WY [ρ]
(Y ≡ ln(1/x0) is the rapidity separating “slow” and “fast”)
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Parton evolution

Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner
(1997-2001), Blaizot, Iancu, Weigert (2002)

Renormalization group equation (JIMWLK) :

∂WY

∂Y
= H WY

H =
1
2

Z

~x⊥,~y⊥

δ

δA+(ǫ, ~y
⊥

)
η(~x⊥, ~y

⊥
)

δ

δA+(ǫ, ~x⊥)

(−∂2
⊥ A+(ǫ, ~x⊥) = ρ(ǫ, ~x⊥) , ǫ ∼ 1/x0)

• η(~x⊥, ~y⊥): non-linear functional of ρ

• Resums all the powers of αs ln(1/x)

• Diffusion in the space of mappings {R2 7→ SU(3)}:

0 Y
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Power counting

Jµ ≡ δµ+ ρ1(x−, ~x⊥) + δµ− ρ2(x+, ~x⊥)

S = −1
2

∫

d4x tr FµνFµν

︸ ︷︷ ︸

SYM

+

∫

d4x JµAµ

• Dilute regime : one parton in each projectile interact
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Power counting

Jµ ≡ δµ+ ρ1(x−, ~x⊥) + δµ− ρ2(x+, ~x⊥)

S = −1
2

∫

d4x tr FµνFµν

︸ ︷︷ ︸

SYM

+

∫

d4x JµAµ

• Dilute regime : one parton in each projectile interact

• Dense regime : multiparton processes become crucial
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Power counting

• In the saturated regime, the sources are of order 1/g
(because

〈
ρρ

〉
∼ occupation number ∼ 1/αs)

• Order of a connected diagram :

1
g2

g# produced gluons g2(# loops)
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Diagrammatic expansion of dN1/d3p

• The single inclusive spectrum has a simple diagrammatic
representation :

dN1

d3~p
= p

A+

A-

+
p

G+ -

• There are only connected graphs (AGK cancellation)

• Perturbative expansion in the saturated regime :

dN1

d3~p
=

1
g2

[

c0
︸︷︷︸

LO

+ c1 g2

︸ ︷︷ ︸

NLO

+ c2 g4

︸ ︷︷ ︸

NNLO

+ · · ·
]
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Expression in terms of classical fields at LO

Gluon spectrum at LO :

dN1

d3~p

˛

˛

˛

˛

LO

∝
Z

x,y
eip·(x−y)

�x�y

X

λ

ǫ(λ)
µ ǫ(λ)

ν Aµ(x)Aν(y)

• A obeys the classical EOM :
δSYM

δA + J = 0

• The boundary conditions are very simple:

lim
x0→−∞

A(x) = 0
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Initial classical fields

Lappi, McLerran (2006)

• Immediately after the collision, the chromo-~E and ~B fields
are purely longitudinal :

0 0.5 1 1.5 2
g

2µτ

0

0.2

0.4

0.6

0.8

[(
g2 µ)

4 /g
2 ]

B
z

2

E
z

2

B
T

2

E
T

2
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Initial classical fields

• The initial chromo-~E and ~B fields form longitudinal
“flux tubes” extending between the projectiles:

Q
S
-1

• The color correlation length in the transverse plane is Q−1
s

⊲ flux tubes of diameter Q−1
s , filling up the transverse area
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Single gluon spectrum at LO

Krasnitz, Nara, Venugopalan (1999 – 2001), Lappi (2003)

• No analytic solution for the Yang-Mills equations,
but straightforward numerically

sΛ/Tk
0 1 2 3 4 5 6

T
k2

)d
N

/d
2

Rπ
1/

(

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

KNV I

KNV II

Lappi
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What is factorization ?

• The naive perturbative expansion of dN1/d3~p,

dN
d3~p

=
1
g2

h

c0 + c1 g2 + c2 g4 + · · ·
i

,

assumes that the coefficients cn are of order one

• This assumption is upset by large logarithms of 1/x1,2 :

c1 = d10 + d11 ln
“ 1

x1,2

”

c2 = d20 + d21 ln
“ 1

x1,2

”

+ d22 ln2
“ 1

x1,2

”

| {z }

Leading Log terms

• Factorizability: the logarithms must be universal and
resummable into functionals that depend only on the
projectiles being collided
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Why factorization works: causality

τcoll ∼ E-1

• The duration of the collision is very short: τcoll ∼ E−1
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Why factorization works: causality

τcoll ∼ E-1

• The duration of the collision is very short: τcoll ∼ E−1

• The logarithms we want to resum arise from the radiation
of soft gluons, which takes a long time
⊲ it must happen (long) before the collision
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Why factorization works: causality

τcoll ∼ E-1

space-like interval

• The duration of the collision is very short: τcoll ∼ E−1

• The logarithms we want to resum arise from the radiation
of soft gluons, which takes a long time
⊲ it must happen (long) before the collision

• The projectiles are not in causal contact before the impact
⊲ the logarithms are intrinsic properties of the projectiles,
independent of the measured observable
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Why the proof is complicated: strong fields

• Procedure: (i) calculate the 1-loop corrections, (ii)
disentangle the logarithms from the finite contributions,
(iii) show that the logs can be assigned to the projectiles

• Problem: strong fields, analytic calculation not feasible

⊲ Take advantage of the retarded nature of the boundary
conditions in order to separate the initial state evolution
(calculable analytically) from the collision itself (hopeless)
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Factorization in two steps: FG, Lappi, Venugopalan (2008)

I : The NLO gluon spectrum can be written as a perturbation of
the initial value of the classical fields on the light-cone :

dN1

d3~p

˛

˛

˛

˛

NLO

=
h 1

2

Z

~u,~v∈LC

G(~u, ~v)TuTv +

Z

~u∈LC

β(~u)Tu

i dN1

d3~p

˛

˛

˛

˛

LO

(Tu ∼ δ/δAinitial(u) , G, β are calculable analytically)

II : The operator [· · · ] is related to the JIMWLK Hamiltonian:

1
2

Z

~u,~v∈LC

G(~u, ~v)TuTv +

Z

~u∈LC

β(~u)Tu = log
“Λ+

p+

”

×H1 + log
“Λ−

p−

”

×H2

+ finite terms

⊲ Factorization follows easily
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Leading Log factorization

• By averaging over all the configurations of the sources in the two
projectiles, we get a factorized formula for the resummation of
the leading log terms to all orders :

fi

dN1

d3~p

fl

LLog

=

Z

ˆ

Dρ1 Dρ2

˜

WY1
[ρ1 ] WY2

[ρ2 ]
dN1

d3~p

˛

˛

˛

˛

LO

with :
∂

∂Y
WY = HW , Y1 = log(

√
s/p+) , Y2 = log(

√
s/p−)

• The distributions W [ρ1,2] must be evolved up to the rapidity of the
produced gluon
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Multigluon spectrum at LO

FG, Lappi, Venugopalan (2008)

• In the saturated regime, the inclusive n-gluon spectrum at
Leading Order is the product of n 1-gluon spectra:

dNn

d3~p1 · · · d3~pn

˛

˛

˛

˛

LO

=
dN1

d3~p1

˛

˛

˛

˛

LO

× · · · × dN1

d3~pn

˛

˛

˛

˛

LO

• At LO, in a given configuration of the sources ρ1,2, the n
gluons are not correlated

• Note: this is true for the bulk (p⊥ . Qs), but not for the tail
of the distribution
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Multigluon spectrum at NLO

• At NLO, one has again:

dNn

d3~p1 · · · d3~pn

˛

˛

˛

˛

NLO

=

=
h 1

2

Z

~u,~v∈LC

G(~u, ~v)TuTv +

Z

~u∈LC

β(~u)Tu

i dNn

d3~p1 · · · d3~pn

˛

˛

˛

˛

LO

• Correlations appear at NLO thanks to the operator
G(~u, ~v)TuTv , which can link two different gluons

• Thanks to their universal structure, we can factorize these
correlations into the distributions W [ρ1,2]
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Leading Log factorization

Factorization formula for the n-gluon spectrum

fi

dNn

d3~p1 · · · d3~pn

fl

LLog

=

Z

ˆ

Dρ1 Dρ2

˜

W [ρ1 ] W [ρ2 ]

× dN1

d3~p1

˛

˛

˛

˛

LO

× · · · × dN1

d3~pn

˛

˛

˛

˛

LO

• This formula tells us that (in the Leading Log
approximation) all the correlations arise from the W [ρ]’s
⊲ they pre-exist in the wave-function of the projectiles

• Note: some short range correlations will also arise from
splittings in the final state (not taken into account here,
because does not come with a ln(s))
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Contributions to the 2-gluon spectrum when ρ2 → g

ρ
2g 1 g-1

AApA

g-4

g-2

1

g2

g4

p q

p

q

p

q

• Only the disconnected graph contributes when ρ2 ∼ g−1

• Some connected graphs become important when ρ2 ∼ g
⊲ short range correlations between the two gluons (in a
fixed configuration of ρ1,2)
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Pomeron splittings

• In additions to modifications of the pattern of local
correlations (visible at LO), the power counting allows new
contributions in the leading logarithmic corrections

• The dilute limit of the JIMWLK Hamiltonian is

H →
ρ→g

g2ρ2
(

δ

δρ

)2

∼ g2

Note: this operator preserves the number of ρ’s

If ρ ∼ g, ρ-number-changing operators have the same order

gnρ2
(

δ

δρ

)n

∼ g2

Note: if ρ ≫ g, the operators with n > 2 are suppressed

• These new operators correspond to Pomeron splittings
(when evolving away from the fragmentation region)
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Summary

• In the saturated regime, the correlations that affect the
bulk of particle production all come via the evolution of the
initial state prior to the collision:

• long range rapidity correlations (∆Y ∼ α−1
s )

• provide a natural explanation for the ridge (R.
Venugopalan), and for the fact that the multiplicity
distribution is a negative binomial (L. McLerran)

• Correlations are more complicated in the dilute regime:
• short range correlations become important
• initial state evolution now sensitive to pomeron splittings

• The “dilute limit” is applicable to several situations:
• collisions involving a small, non saturated, projectile
• production of high-pt particles in AA collisions
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Expression in terms of classical fields at LO

• Classical fields are sums of tree diagrams :

x y
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Expression in terms of classical fields at LO

• Classical fields are sums of tree diagrams :

x y

Ainitial

• Note : thanks to the retarded boundary conditions, the
gluon spectrum is a functional of the value of the classical
field on some initial Cauchy surface :

dN1

d3~p

∣
∣
∣
∣

LO

= F[Ainitial]
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Single gluon spectrum at NLO

1-loop contributions

x y x y
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Single gluon spectrum at NLO

1-loop contributions

x y

u

v

x y

u

v

• Can be written as a perturbation of the LC initial fields :

dN
d3~p

˛

˛

˛

˛

NLO

=
h 1

2

Z

~u,~v∈LC

G(~u, ~v)TuTv

i dN
d3~p

˛

˛

˛

˛

LO
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Single gluon spectrum at NLO

1-loop contributions

x y

u

v

x y

u

v

x y

u

• The loop correction can also be below the light-cone :

dN
d3~p

˛

˛

˛

˛

NLO

=
h 1

2

Z

~u,~v∈LC

G(~u, ~v)TuTv +

Z

~u∈LC

β(~u)Tu

i dN
d3~p

˛

˛

˛

˛

LO
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Contributions to the 2-gluon spectrum when ρ2 → g

In the limit ρ2 → g

dN2

d3~pd3~q

∣
∣
∣
∣

LO

∝ 1
∣
∣~p

∣
∣
∣
∣~q

∣
∣

∣
∣
∣A(+)(~p)A(+)(~q) + Σ(+)(~p, ~q)

∣
∣
∣

2

A(+)(~p) =

∫

d4x eip·x �x A(x)

0 =
δSYM

δA + J , lim
x0→−∞

A(x) = 0

Σ(+)(~p, ~q) =
1
2

∫

~k

(

a(+)
+k (~p)a(+)

−k (~q) + ~p ↔ ~q
)

a(+)
±k (~p) =

∫

d4x eip·x �x a±k (x)

0 =
[

�x +
δ2SYM

δA2

]

a±k , lim
x0→−∞

a±k (x) = e±ik·x
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