

From VIC (VRVS) to ViEVO (EVO)

• 3 years of experiences with developing of video application
VIC for VRVS allowed us to develop a new video application
for EVO system - called ViEVO

• the biggest differences are:
• new implementation of codecs (H.261, H.263)

• improved performance (code optimization, IPP utilization)

• brand new GUI – nicer, more intuitive, look of new set of
tools for EVO system
• brand new display system based on OpenGL

Display facilities of VIC (VRVS)

• each video displayed in separate window, what leads to
following negative consequences:

• crowded taskbar in case of larger number of video streams
• management of display windows on a computer screen is
uncomfortable – has been partially solved with automatic
display modes

• strong linkage between physical video resolution and
display size of video source

• video source can be displayed only in its original size, or in
two re-sampled versions: ¼ of original resolution (every second
sample is taken) and 4x of original resolution (samples are
duplicated in each direction) - main reason is to save maximum
CPU resources for video encoding and decoding
• computer screen is covered very soon by video windows in
case of larger number of video streams

• limited possibilities to create visually attractive display
functionality

CIF
(352 x 288)

CIF
(352 x 288)XGA

(1024 x 768)

VGA
(640 x 480)

1680

1050

Overview of videoconference clients in EVOVIC
17 participants displayed
(“Speaker + all” mode)

ViEVO (EVO) and OpenGL solution

• each video displayed in separate window, what leads to
following negative consequences:

• crowded taskbar in case of larger number of video streams
• management of display windows on a computer screen is
uncomfortable – has been partially solved with automatic
display modes

• strong linkage between physical video resolution and
display size of video source

• video source can be displayed only in its original size, or in
two resampled versions: ¼ of original resolution (every second
sample is taken) and 4x of original resolution (samples are
duplicated in each direction) - main reason is to save maximum
CPU resources for video encoding and decoding
• computer screen is covered very soon in case of larger number
of video streams

• limited possibilities to create visually attractive display
functionality

• easy and straightforward solution is to display all video
sources in one common display window managed by
OpenGL

• only one display window on the taskbar

• user can place the window on arbitrary position on the
screen with arbitrary window size – content will be managed
automatically by OpenGL in accord with selected display mode

• video resolution and display size are not linked anymore

• texture is created from each decoded video frame and then it
is mapped to rectangle of selected (arbitrary) size. Textures
are stretched or shrinked by OpenGL as necessary and this is
applied using the current texture filter (performed by graphic
hardware, CPU is not used)

• space on the screen can be used effectively

• OpenGL allows us to create any display mode in 3D which
is hardware accelerated – many possibilities to create
visually very attractive content

Video with
CIF resolution
(new OpenGL solution)

Video with
VGA resolution
(new OpenGL solution)

Comparison No. 1

Video with
CIF resolution
enlarged to 4CIF
(old VIC solution)

Video with
CIF resolution
enlarged to 4CIF
(new OpenGL solution)

Comparison No. 2

OpenGL based display mode

Speaker

OpenGL based display mode

OpenGL based display mode

From VIC (VRVS) to ViEVO (EVO)

“Speaker” display mode

Ongoing and future work

Speaker

Local user’s
video

From VIC (VRVS) to ViEVO (EVO)

“Debate” display mode

Ongoing and future work

Current
speaker

Recent
speakers

From VIC (VRVS) to ViEVO (EVO)

“Presentation” display mode

Ongoing and future work
Presentation

Presenter

RGB and YUV color spaces

R
G

B

Y

U
V

• the human visual system is less sensitive to color than to
luminance (brightness)

• in RGB color space all three colors are equally important
and all stored at the same resolution

• more efficient way is to separate luminance from color
information and represent luminance with higher resolution
than color information – YUV (YCrCb) color model

RGB representation YUV (4:2:0) representation –
requires half as many bits as
the RGB representation

RGB versus YUV textures

• video displaying application requires continuous updating
of video textures (unlike, for example, games, where
textures can be preloaded at the beginning of the level)

• copying of large amount of data from PC memory to the
graphic hardware memory can have negative impact on
application performance

Can we speed up this process or make it more effective?

• solution are YUV textures (not natively supported by
OpenGL) + utilization of programmable OpenGL pipeline
(vertex and fragment shaders)

• benefits:

• only half amount of data is transferred from PC memory to
graphic card memory compare to RGB textures

• saves the graphic card memory, 3x less memory usage
compare to RBG textures

• more effective memory utilization

• YUV -> RGB conversion is performed by GPU – saves CPU!!

Fixed OpenGL rendering pipeline

Programmable OpenGL rendering pipeline

RGB versus YUV textures

U V

512

RGB texture

352

288R

352

288

352

288

512

512

512

512

512

512

352

288

G

B

Y

512

288

144

512

176176

YUV texture

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 512, 512,
0, GL_RGB, GL_UNSIGNED_BYTE, textureData);

glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, 512, 512,
0, GL_LUMINANCE, GL_UNSIGNED_BYTE, textureData);

Font engine for OpenGL

• FreeType library (Win32, Mac OS, Linux) - a software
font engine that is designed to be small, efficient, highly
customizable, and portable while capable of producing
high-quality output - www.freetype.org

WGL 2D font bitmaps – just
2 levels (0,1) per pixel

Freetype font pixmaps – 256
levels per pixel

Conclusions

Thank you for your attention

• interactivity with OpenGL content – buttons, controls

• allows us to remove old Tcl/Tk based GUI

• next step - porting the solution to MAC and Linux
platforms

• implement advanced 3D models of real
meetings/conferences (audience in auditorium,
participants sitting around a table, etc)

• all is valid also for MS Direct3D technology, OpenGL has
been chosen for its multiplatform support

