

ttH Analysis in 3 Leptons Final State at ATLAS

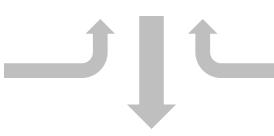
Chao Wang

On behalf of the ATLAS collaboration

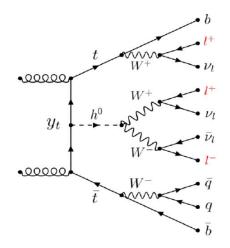
Workshop on the Standard Model and Beyond

09-2017, Corfu, Greece

Higgs and Top

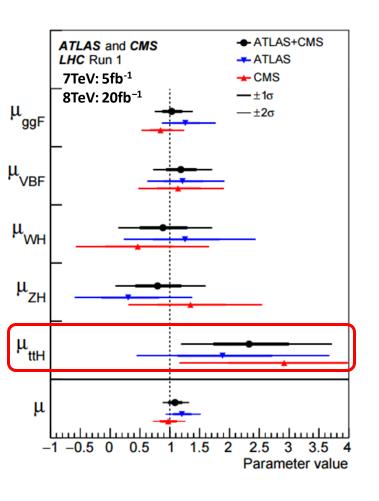

"Top Quark"

Yukawa Coupling


$$y_{\rm t} = \sqrt{2} m_{\rm t}/v \simeq 1$$

Special role for the top quark in electroweak symmetry breaking?

Close to unity - Why?

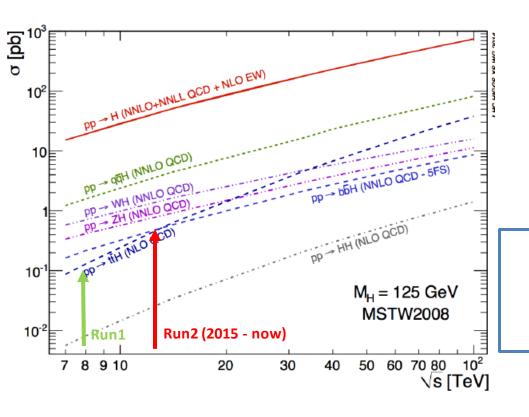

Why is the top so heavy?

 $t\bar{t}H$ production can test Higgs properties and give direct access to top-Higgs coupling

Review of ttH Measurements in Run1

Run1

Production process	ATLAS + CMS	ATLAS	CMS
$\mu_{tar{t}H}$	$2.3^{+0.7}_{-0.6}$	$1.9^{+0.8}_{-0.7}$	$2.9^{+1.0}_{-0.9}$

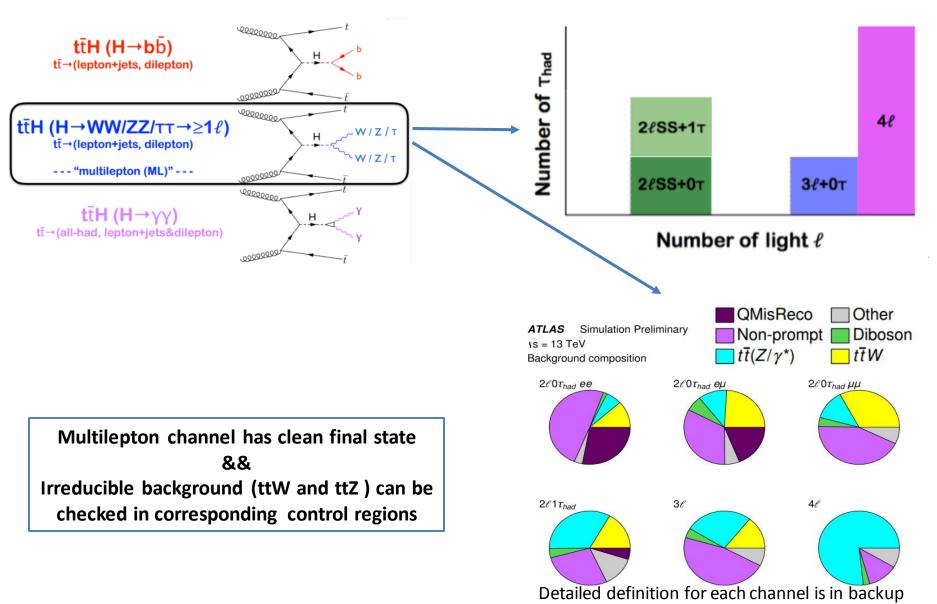

ATLAS: the combined observed significance is 2.33σ , 1.53σ is expected with 20.3 fb⁻¹(8TeV) (CERN-EP-2016-058, JHEP 1605 (2016) 160)

CMS: the combined observed significance of 2σ with 5.1 fb⁻¹(7TeV) and 19.7 fb⁻¹(8TeV) (CMS-HIG-13-029, JHEP 1409 (2014) 087)

The **combined** observed significance is 4.4σ , 2.0σ is expected (CERN-EP-2016-100, JHEP 1608 (2016) 045)

Overview of ttH Measurements in Run2

Run2

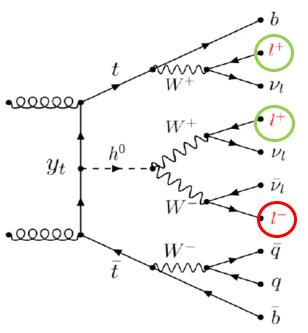

Cross Section (pb) of ttH		
8 TeV	0.13	
13 TeV	0.5085	

A factor of 4 in 13 TeV

The higher energy and Lumi give us good chance to search for the ttH production in Run2

The background is also increased and need to be estimated carefully

ttH Analyses at ATLAS

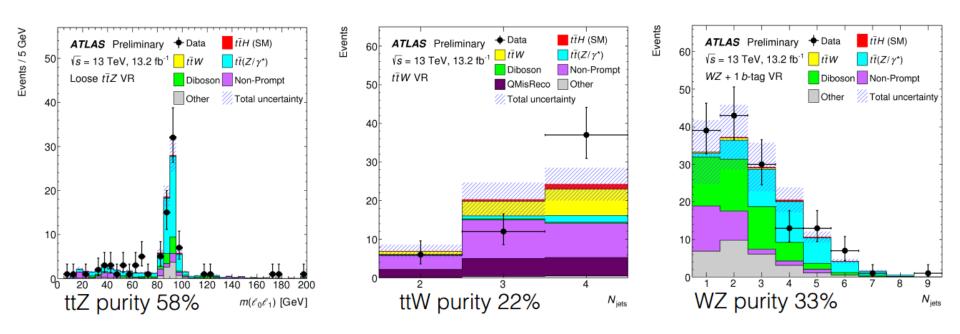

(ATLAS-CONF-2016-068)

31 Analysis Overview

	Higgs	boson	decay	mode	$A \times \epsilon$
Category	WW^*	au au	ZZ^*	Other	$(\times 10^{-4})$
$2\ell 0 au_{ m had}$	77%	17%	3%	3%	14
$2\ell 1 au_{ m had}$	46%	51%	2%	1%	2.2
3ℓ	74%	20%	4%	2%	9.2
4ℓ	72%	18%	9%	2%	0.88

3l lepton channel mainly targets H->WW*

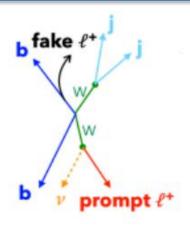
3l H-> WW* final state


	Leptons	Jets	B-Tags	Trigger match
	==3			at least one
Definition of	$\Sigma Q_{lep} = \pm 1$	N_{jet}	$\geq 4 \& N_b \geq 1$	trigger matched
	11 & 12: Tight, $p_T > 20 \text{ GeV }(*)$	or		lepton with
Signal Region	$10: \text{Loose}, p_T > 10 \text{ GeV } (*)$	N _{jet} =	$= 3 \& N_b \ge 2$	$p_T > 25 \text{ GeV}$
	$ M_{ll,OS-SF} - 91.2 \text{ GeV} > 10 \text{ GeV}$			(21 GeV for
in 3l	$M_{ll,OS-SF} > 12 \text{ GeV}$			muon in 2015)
	$ M_{lll} - 91.2 \text{ GeV} > 10 \text{ GeV}$,

- Fakes (reducible, mainly the fakes from ttbar+jets) are dominant background
- ttW, ttZ (irreducible) background are estimated with MC

^{*}IO (with opposite sign charge) *I1 and I2(with same sign charge)

Background Estimation


Irreducible Background

Irreducible background:

- ttV (ttW and ttZ) is estimated with MC
 - ✓ Both modelling have been checked in the control region
 - ✓ The purity in the corresponding control regions is good
- Diboson is estimated with MC as well and modelling is good

Fake Estimation in 31

Fake leptons in 31

Major source:

leptons within jets, from heavy hadrons

Partially removed by:

Isolation or overlap removal requirements

Fake factor is employed to estimate the fake leptons in 3I

Assumption on lep0:

Most lep0 (with opposite charge) are prompt and checked by MC

Advantages:

Only need to apply the non-prompt estimate to lepton 1 and 2
The fake factor is defined as the ratio between the number of same-sign events

with tight leptons only and events with one anti-tight lepton.

$$\theta_{\ell} = \frac{N_{\ell\ell}}{N_{\ell\ell}}$$

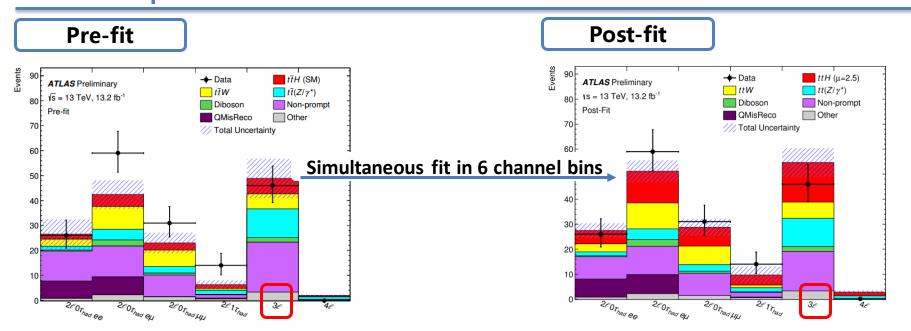
$$\theta_{\ell} = \frac{N_{\ell\ell}}{N_{\ell\ell}} (\leq 4 \text{jets}) = \frac{N_{\ell\ell}^{Data} - N_{\ell\ell}^{Prompt SS}}{N_{\ell\ell}^{Data} - N_{\ell\ell}^{Prompt SS}}$$

$$\theta_{\mu} = \frac{N_{\mu\mu}}{N_{\mu\mu}} (\leq 4 \text{jets}) = \frac{N_{\mu\mu}^{Data} - N_{\mu\mu}^{Prompt SS}}{N_{\mu\mu}^{Data} - N_{\mu\mu}^{Promt SS}}$$

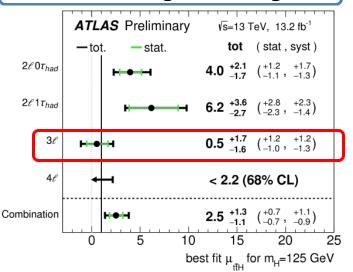
$$N_{\text{estimated fakes},SR} = [N_{data,CR} - N_{\text{promptsMC}}] \cdot \theta$$

Fake Estimation in 31

Closure test is performed in a low jet region of 31


Predictions of fakes in 3l channel (2-3 jets, 1b) compared to observed numbers Generally, the non-closure is about 20% and are compatible within the uncertainty

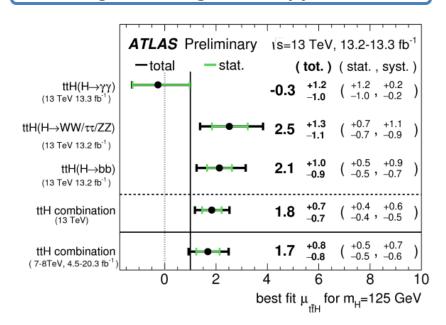
Yields (pre-fit) in signal region for all channels

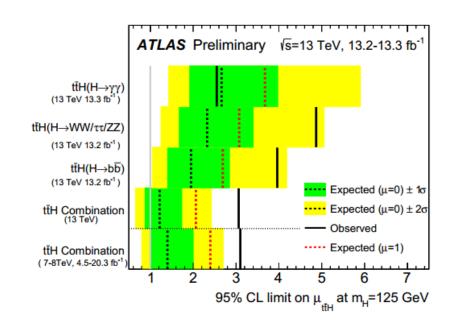

	$2\ell 0\tau_{\rm had}~ee$	$2\ell 0\tau_{\rm had} \ e\mu$	$2\ell 0\tau_{\rm had} \mu\mu$	$2\ell 1\tau_{ m had}$	3ℓ	4ℓ
tŧW	2.9 ± 0.7	9.1 ± 2.5	6.6 ± 1.6	0.8 ± 0.4	6.1 ± 1.3	_
$t\bar{t}(Z/\gamma^*)$	1.55 ± 0.29	4.3 ± 0.9	2.6 ± 0.6	1.6 ± 0.4	11.5 ± 2.0	1.12 ± 0.20
Diboson	0.38 ± 0.25	2.5 ± 1.4	0.8 ± 0.5	0.20 ± 0.15	1.8 ± 1.0	0.04 ± 0.04
Non-prompt leptons	12 ± 6	12 ± 5	8.7 ± 3.4	1.3 ± 1.2	20 ± 6	0.18 ± 0.10
Charge misreconstruction	6.9 ± 1.3	7.1 ± 1.7	_	0.24 ± 0.03		_
Other	0.81 ± 0.22	2.2 ± 0.6	1.4 ± 0.4	0.63 ± 0.15	3.3 ± 0.8	0.12 ± 0.05
Total background	25 ± 6	38 ± 6	20 ± 4	4.8 ± 1.4	43 ± 7	1.46 ± 0.25
$t\bar{t}H$ (SM)	2.0 ± 0.5	4.8 ± 1.0	2.9 ± 0.6	1.43 ± 0.31	6.2 ± 1.1	0.59 ± 0.10
Data	26	59	31	14	46	0

Results

Multilepton Channel

Measured signal strength




The best-fit result of the μ is 2.5 \pm 0.7 (stat.) ^{+1.1} _{-0.9} (syst.), is consistent with the Standard Model expectation with 13.2fb ⁻¹ (ATLAS-CONF-2016-058)

Systematic uncertainty is dominated by uncertainties from non-prompt backgrounds estimates in the 21, 31

Latest Combined Results

ttH signal strength and upper limits

Measured significance of ttH production

Channel	Significance		
	Observed $[\sigma]$	Expected $[\sigma]$	
$t\bar{t}H,H\to\gamma\gamma$	-0.2	0.9	
$t\bar{t}H,H\to(WW,\tau\tau,ZZ)$	2.2	1.0	
$t\bar{t}H,H o b\bar{b}$	2.4	1.2	
$t\bar{t}H$ combination	2.8	1.8	

Combined ATLAS ttH results with 13.2 fb -1

The best fit value of the signal strength is 1.8 ± 0.7 , which corresponds to 2.8 (1.8) σ observed (expected) significance (ATLAS-CONF-2016-068)

Conclusions

Promising Run1 combined results in the search of ttH production

- ✓ Analysis strategy works well with Run2 dataset (13.2 fb⁻¹, 13 TeV)
 - ✓ ttV modelling is checked by MC
 - ✓ Fake leptons are estimated with data-driven method (fake factor)
- ✓ Results show improvements and are compatible with Run1 results
 - ✓ Run2(13.2fb⁻¹): the combined observed significance is 2.8 σ , 1.8 σ is expected

Backup

MC list and Overlap Removal

Process	ME Generator	Parton Shower	PDF	Tune
tīH	MG5_AMC [12]	Рутніа 8 [13]	NNPDF 3.0 NLO [14]/	A14 [15]
			NNPDF 2.3 LO [16]	
tHqb	MG5_AMC	Рутніа 8	CT10 [17]/NNPDF 2.3 LO	A14
tHW	MG5_AMC	Herwig++ [18]	CT10/CTEQ6L1 [19, 20]	UE-EE-5 [21]
$t\bar{t}W$	MG5_AMC	Рутніа 8	NNPDF 3.0 NLO/2.3 LO	A14
$t\bar{t}(Z/\gamma^*)$	MG5_AMC	Рутніа 8	NNPDF 3.0 NLO/2.3 LO	A14
$t(Z/\gamma^*)$	MG5_AMC	Рутніа 6 [<mark>22</mark>]	CTEQ6L1	Perugia2012 [23]
$tW(Z/\gamma^*)$	MG5_AMC	Рутніа 8	NNPDF 2.3 LO	A14
tītī	MG5_AMC	Рутніа 8	NNPDF 2.3 LO	A14
$t\bar{t}W^+W^-$	MG5_AMC	Рутніа 8	NNPDF 2.3 LO	A14
$t\bar{t}$	Powheg-BOX [24]	Рутніа 6	CT10/CTEQ6L1	Perugia2012
s-, t-channel,	POWHEG-BOX [25, 26]	Рутніа 6	CT10/CTEQ6L1	Perugia2012
Wt single top				
VV, qqVV, VVV	Sherpa 2.1.1 [27]	Sherpa	CT10	Sherpa default
$Z \to \ell^+ \ell^-$	Sherpa 2.2	SHERPA	NNPDF 3.0 NLO	Sherpa default

Keep	Remove	Cone size (\Delta R) or track
electron	tau	0.2
muon	tau	0.2
electron	CaloTagged muon	shared track
muon	electon	shared track
electron	jet	0.2
jet	electron	0.4
muon	jet	(0.2 or ghost-matched to muon) and (numJetTrk \leq 2)
jet	muon	0.4
tau	jet	0.2

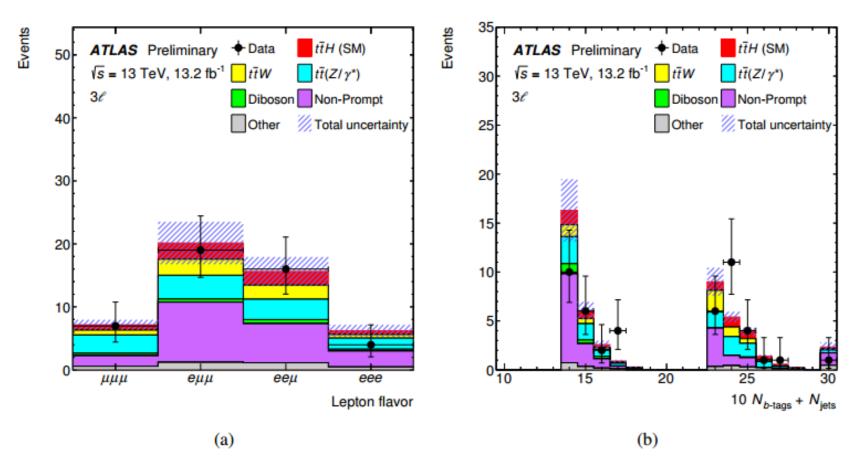
Channel	Leptons	Hadronic Taus	Jets	B-Tags	Lepton flavour	Trigger match
	==2				ee	at least one
	$\Sigma Q_{lep} = \pm 2$				eμ	trigger matched
2ℓss	$p_T^{lead} > 25 \text{ GeV}$	== 0	≥5	≥1	$\mu\mu$	lepton with
	$p_T^{lead} > 25 \text{ GeV}$					$p_T > 25 \text{ GeV}$
	$ \eta^{elec} < 1.37$					(21 GeV for muon in 2015)
	==3					at least one
	$\Sigma Q_{lep} = \pm 1$	_	N _{jet}	$\geq 4 \& N_b \geq 1$	_	trigger matched
3ℓ	$\ell 1 \& \ell 2$: Tight, $p_T > 20 \text{ GeV } (*)$			or		lepton with
36	ℓ 0: Loose, $p_T > 10 \text{ GeV } (*)$		$N_{jet} =$	$= 3 \& N_b \ge 2$		$p_T > 25 \text{ GeV}$
	$ M_{ll,OS-SF} - 91.2 \text{ GeV} > 10 \text{ GeV}$					(21 GeV for
	$M_{II,OS-SF} > 12 \text{ GeV}$					muon in 2015)
	$ M_{lll}$ - 91.2 GeV > 10 GeV					
	==4					
	$p_{\rm T} > 10~{ m GeV}$					
4ℓ	Loose def + Gradient Iso					at least one
	$\Sigma Q_{lep}=0$	_	≥ 2	≥ 1	_	trigger matched
	$ M_{II,OS-SF} - 91.2 \text{ GeV} > 10 \text{ GeV}$					lepton with
	$M_{II,OS-SF} > 12 \text{ GeV}$					$p_T > 25 \text{ GeV}$
	M_{4l} within [100, 350] GeV					(21 GeV for
	M_{4l} veto \pm 5 GeV around $M_H = 125.0$ GeV					muon in 2015)
	==2					at least one
	$\Sigma Q_{lep} = \pm 2$	== 1			_	trigger matched
2ℓ SS+ $1\tau_{had}$	$p_{T,lep}^{lead} > 25 \text{ GeV}$	$Q_{\tau} = -Q_{lep}$	≥4	≥1		lepton with
	$p_{T,lep}^{sub} > 15 \text{ GeV}$					$p_T > 25 \text{ GeV}$
	$ M_{ee} - 91.2 \text{ GeV} > 10 \text{ GeV}$					(21 GeV for muon in 2015)

Channel	Region	tīH(S)	Bkgd (B)	tHjb + WtH	S/B
	2ℓSS ee	1.99 ± 0.51	22.2 ± 3.4	0.10 ± 0.03	0.09
	2ℓSS eμ	4.82 ± 0.95	38.5 ± 5.1	0.26 ± 0.07	0.13
H (WW 22)	$2\ell SS \mu\mu$	2.85 ± 0.58	21.2 ± 3.8	0.15 ± 0.04	0.13
$H \to (WW, \tau\tau, ZZ)$	$2\ell SS + \tau_{had}$	1.43 ± 0.31	5.7 ± 1.7	0.11 ± 0.03	0.25
	3ℓ	6.2 ± 1.1	38.9 ± 5.3	0.30 ± 0.08	0.16
	4ℓ	0.59 ± 0.10	1.42 ± 0.24	0.014 ± 0.006	0.42

Definition of Lepton and VR

	Lo	ose	Tight		
	e μ		e	μ	
Track isolation	99% eff.	99% eff.	$< 0.06 \times p_{\rm T}$ (*)	$< 0.06 \times p_{\rm T}$ (*)	
Calorimeter isolation	99% eff.	99% eff.	$< 0.06 \times p_{\rm T}$ (*)	99% eff. (*)	
Identification working point	Loose	Loose	Tight	Loose	
Transverse impact parameter $ d_0 /\sigma_{d_0}$	< 5	< 3	< 5	< 3	
z impact parameter $ \Delta z_0 \sin \theta_{\ell} $	< 0.5 mm	< 0.5 mm	< 0.5 mm	< 0.5 mm	

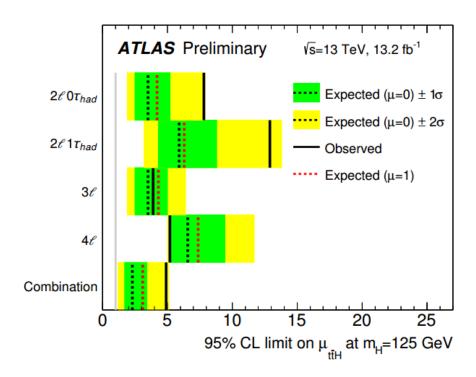
VR	Tight $t\bar{t}Z$	3ℓ lepton selection
		At least one $\ell^+\ell^-$ pair with $ m(\ell^+\ell^-) - 91.2 \text{ GeV} < 10 \text{ GeV}$
		$N_{\rm jets} \ge 4$ and $N_{b-{\rm jets}} \ge 2$
VR	Loose $t\bar{t}Z$	3ℓ lepton selection
		At least one $\ell^+\ell^-$ pair with $ m(\ell^+\ell^-) - 91.2 \text{ GeV} < 10 \text{ GeV}$
		$N_{\rm jets} \ge 4$ and $N_{b-{\rm jets}} \ge 1$, or $N_{\rm jets} = 3$ and $N_{b-{\rm jets}} \ge 2$
VR	<i>WZ</i> + 1 <i>b</i> -tag	3ℓ lepton selection
		At least one $\ell^+\ell^-$ pair with $ m(\ell^+\ell^-) - 91.2 \text{ GeV} < 10 \text{ GeV}$
		$N_{\rm jets} \ge 1$ and $N_{b-{\rm jets}} = 1$
VR	$t\bar{t}W$	$2\ell 0\tau_{\rm had}$ lepton selection
		$2 \le N_{\rm jets} \le 4$ and $N_{b-{\rm jets}} \ge 2$
		$H_{\rm T, jets} > 220$ GeV for ee and $e\mu$ events
		$E_{\rm T}^{\rm miss} > 50$ GeV and $(m(ee) < 75$ or $m(ee) > 105$ GeV) for ee events

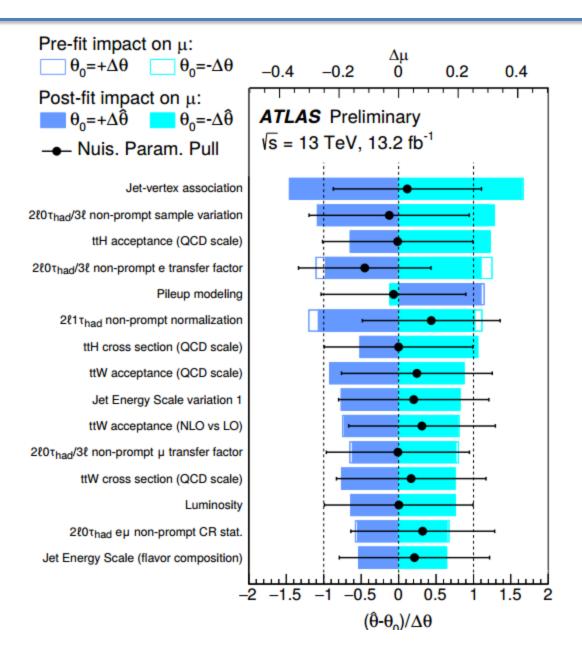

Uncertainties' source on 3I fakes estimation

Uncertainties [%]		Channels			
		$2\ell \geq 5$ jets			3ℓ
		$e^{\pm}e^{\pm}$	$\mu^{\pm}\mu^{\pm}$	$e^{\pm}\mu^{\pm}$	
Statistical	$\Delta heta_e^{ m stat}$	24.159	_	18.231	12.902
	$\Delta heta_{\mu}^{ m stat}$	_	18.622	4.5696	8.6768
	$\Delta N_{\ell\ell} (\geq 5 \text{ jets}) (\text{stat})$	19.872	27.533	21.03	16.999
Systematics	$\Delta \theta_e^{\text{syst}}$ (closure)	24.792	_	18.708	13.24
	$\Delta\theta_{\mu}^{\rm syst}$ (closure)	_	9.7602	2.395	4.5476
	$\Delta \theta^{\text{syst}}$ (other fakes)	19	19	15.077	13.466
	MC Q Mis Id (ℓ/ℓ)	15.161	-	9.935	8.0968
Total		46.734	39.511	38.435	31.203
Correlated Systematics	Q Mis Id (ℓℓ)	18.989	_	14.329	10.141

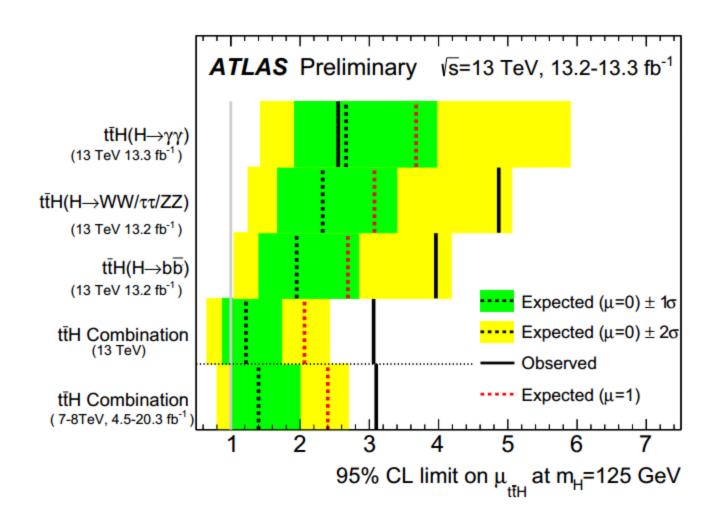
Summary of the effects of the systematic uncertainties on μ

Uncertainty Source		$\Delta \mu$	
Non-prompt leptons and charge misreconstruction	+0.56	-0.64	
Jet-vertex association, pileup modeling		-0.36	
$t\bar{t}W$ modeling	+0.29	-0.31	
$t\bar{t}H$ modeling	+0.31	-0.15	
Jet energy scale and resolution	+0.22	-0.18	
$t\bar{t}Z$ modeling	+0.19	-0.19	
Luminosity	+0.19	-0.15	
Diboson modeling	+0.15	-0.14	
Jet flavor tagging	+0.15	-0.12	
Light lepton (e, μ) and τ_{had} ID, isolation, trigger	+0.12	-0.10	
Other background modeling	+0.11	-0.11	
Total systematic uncertainty	+1.1	-0.9	


Plots in Signal Region


Characteristics of events in the 3ℓ signal region: (a) lepton flavor composition; (b) $10\times$ the number of b-tagged jets plus the total number of jets. The signal is set to the SM expectation ($\mu_{t\bar{t}H}=1$) and the background expectation is pre-fit (using initial values of the background systematic uncertainty nuisance parameters). The hatched region shows the total uncertainty on the background plus SM signal prediction in each bin.

Expected Yields Table and Upper Limits


	$2\ell 0\tau_{\rm had}~ee$	$2\ell 0\tau_{\rm had}\ e\mu$	$2\ell 0\tau_{\rm had} \mu\mu$	$2\ell 1 au_{ m had}$	3ℓ	4ℓ
$t\bar{t}W$	2.9 ± 0.7	9.1 ± 2.5	6.6 ± 1.6	0.8 ± 0.4	6.1 ± 1.3	_
$t\bar{t}(Z/\gamma^*)$	1.55 ± 0.29	4.3 ± 0.9	2.6 ± 0.6	1.6 ± 0.4	11.5 ± 2.0	1.12 ± 0.20
Diboson	0.38 ± 0.25	2.5 ± 1.4	0.8 ± 0.5	0.20 ± 0.15	1.8 ± 1.0	0.04 ± 0.04
Non-prompt leptons	12 ± 6	12 ± 5	8.7 ± 3.4	1.3 ± 1.2	20 ± 6	0.18 ± 0.10
Charge misreconstruction	6.9 ± 1.3	7.1 ± 1.7	_	0.24 ± 0.03	_	_
Other	0.81 ± 0.22	2.2 ± 0.6	1.4 ± 0.4	0.63 ± 0.15	3.3 ± 0.8	0.12 ± 0.05
Total background	25 ± 6	38 ± 6	20 ± 4	4.8 ± 1.4	43 ± 7	1.46 ± 0.25
$t\bar{t}H$ (SM)	2.0 ± 0.5	4.8 ± 1.0	2.9 ± 0.6	1.43 ± 0.31	6.2 ± 1.1	0.59 ± 0.10
Data	26	59	31	14	46	0

NPs

Upper limits on the ttH signal strength for the individual analyses

