General considerations on lepton mass matrices

Andrea Romanino, SISSA

Reyimuaji, R to appear
Domcke, R JHEP 1604.08879
Marzocca, R JHEP 1409.3760

Are lepton masses and mixings determined by symmetries or symmetry breaking?

Andrea Romanino, SISSA

Reyimuaji, R to appear
Domcke, R JHEP 1604.08879
Marzocca, R JHEP 1409.3760

Introduction and definition of the problem

Origin of lepton masses

$$
\begin{array}{lll}
\lambda_{i j}^{E} e_{i}^{c} l_{j} h & \rightarrow m_{i j}^{E} e_{i}^{c} e_{j} & m_{E}=v \lambda_{E} \\
\frac{c_{i j}}{2 \Lambda} l_{i} l_{j} h h & \rightarrow \frac{m_{i j}^{\nu}}{2} \nu_{i} \nu_{j} & m_{\nu}=c \frac{v^{2}}{\Lambda}
\end{array}
$$

assuming
high scale origin
of neutrino masses

$$
\binom{e \leftrightarrow e_{L}}{e^{c} \leftrightarrow \overline{e_{R}}}
$$

Flavour symmetry

- G flavour symmetry group (any, commutes with Poincaré and Gsm)

$$
g \in G:\left\{\begin{array}{lll}
l_{i} & \rightarrow & U_{l}(g)_{i j} l_{j} \\
e_{i}^{c} & \rightarrow & U_{e^{c}}(g)_{i j} e_{j}^{c}
\end{array}\right.
$$

Flavour symmetry

- G flavour symmetry group (any, commutes with Poincaré and Gsm)

$$
g \in G:\left\{\begin{array}{rll}
l_{i} & \rightarrow & U_{l}(g)_{i j} l_{j} \\
e_{i}^{c} & \rightarrow & U_{e^{c}}(g)_{i j} e_{j}^{c}
\end{array}\right.
$$

- Invariance of the lagrangian under G

$$
\begin{aligned}
& U_{e^{c}}(g)^{T} m_{E}^{0} U_{l}(g)=m_{E}^{0} \\
& U_{l}(g)^{T} m_{\nu}^{0} U_{l}(g)=m_{\nu}^{0}
\end{aligned}
$$

Flavour symmetry

- G flavour symmetry group (any, commutes with Poincaré and Gsm)

$$
g \in G:\left\{\begin{array}{lll}
l_{i} & \rightarrow & U_{l}(g)_{i j} l_{j} \\
e_{i}^{c} & \rightarrow & U_{e^{c}}(g)_{i j} e_{j}^{c}
\end{array}\right.
$$

- Invariance of the lagrangian under G

$$
\begin{aligned}
& U_{\text {(ec }}(g)^{T} m_{E}^{0} \omega_{l}(g)=m_{E}^{0} \\
& U_{l}(g)^{T} m_{\nu}^{0} U_{l}(g)=m_{\nu}^{0}
\end{aligned}
$$

Flavour symmetry breaking: $\mathrm{G} \xrightarrow{\langle\phi\rangle} \mathrm{H}$

$$
\begin{aligned}
m_{E} & =m_{E}^{0}+m_{E}^{1} \\
m_{\nu} & =m_{\nu}^{0}+m_{\nu}^{1}
\end{aligned}
$$

Flavour symmetry breaking: $\mathrm{G} \xrightarrow{\langle\phi\rangle} \mathrm{H}$

$$
\begin{aligned}
& m_{E}=m_{E}^{0}+m_{E}^{1} \\
& m_{\nu}=m_{\nu}^{0}+m_{\nu}^{1} \\
& \text { variant under } G
\end{aligned}
$$

Flavour symmetry breaking: $\mathrm{G} \xrightarrow{\langle\phi\rangle} \mathrm{H}$

Flavour symmetry breaking: $\mathrm{G} \xrightarrow{\langle\phi\rangle} \mathrm{H}$

e.g. $\frac{\lambda_{i j k}}{\Lambda} \phi_{k} e_{i}^{c} l_{j} h \quad$ (invariant) $\quad \rightarrow \quad\left(m_{E}^{1}\right)_{i j}=\lambda_{i j k} \frac{\langle\phi\rangle}{\Lambda} v$

What accounts for the LO pattern of lepton observables?

- The flavour symmetry G

$$
\begin{aligned}
m_{E} & =m_{E}^{0}+m_{E}^{1} \\
m_{\nu} & =m_{\nu}^{0}+m_{\nu}^{1}
\end{aligned}
$$

What accounts for the LO pattern of lepton observables?

- The flavour symmetry G

$$
\begin{aligned}
& m_{E}=\underbrace{m_{E}^{0}}_{\text {I }}+m_{E}^{1} \\
& m_{\nu}^{0} \\
& m_{\nu} \\
& \text { cription of lepton } \\
& \text { observables }
\end{aligned}
$$

What accounts for the LO pattern of lepton observables?

- The flavour symmetry G

What accounts for the LO pattern of lepton observables?

- The flavour symmetry G

$$
\begin{array}{ll}
\text { e.g. } & m_{D}^{0}=\left(\begin{array}{lll}
0 & & \\
& 0 & \\
& & m_{b}
\end{array}\right) \quad m_{U}^{0}=\left(\begin{array}{lll}
0 & & \\
& 0 & \\
& & m_{t}
\end{array}\right) \\
& m_{E}^{0}=\left(\begin{array}{lll}
0 & & \\
& 0 & \\
& & m_{\tau}
\end{array}\right) \quad \begin{array}{l}
V_{\mathrm{CKM}}^{0}=1 \\
\left(\theta_{C} \text { undetermined }\right)
\end{array}
\end{array}
$$

What accounts for the LO pattern of lepton observables?

- The flavour symmetry G

What accounts for the LO pattern of lepton observables?

- The flavour symmetry G
- Symmetry breaking effects

$$
\begin{aligned}
m_{E} & =m_{E}^{0}+m_{E}^{1} \\
m_{\nu} & =m_{\nu}^{0}+m_{\nu}^{1}
\end{aligned}
$$

What accounts for the LO pattern of lepton observables?

- The flavour symmetry G
- Symmetry breaking effects

$$
\begin{aligned}
& m_{E}=m_{E}^{0}+m_{E}^{1} \\
& m_{\nu}=m_{\nu}^{0}+m_{\nu}^{1} \\
& =0 \text { or } m_{v}=0 \\
& \text { symmetric limit }
\end{aligned}
$$

What accounts for the LO pattern of lepton observables?

- The flavour symmetry G
- Symmetry breaking effects

What accounts for the LO pattern of lepton observables?

- The flavour symmetry G
- Symmetry breaking effects

What accounts for the LO pattern of lepton observables?

- The flavour symmetry G
- Symmetry breaking effects

What accounts for the LO pattern of lepton observables?

- The flavour symmetry G
- Symmetry breaking effects
- $\mathrm{G} \rightarrow \mathrm{H}$ only

$$
\begin{aligned}
& m_{E}=m_{E}^{0}+m_{E}^{1} \\
& m_{\nu}=m_{\nu}^{0}+m_{\nu}^{1} \\
& =0 \text { or } m_{v}=0 \\
& \text { symmetric limit }
\end{aligned}
$$

- Flavon dynamics: quantum numbers, vevs, potential

What accounts for the LO pattern of lepton observables?

- The flavour symmetry G
- Symmetry breaking effects

- Flavon dynamics: quantum numbers, vevs, potential

What accounts for the LO pattern of lepton observables?

- The flavour symmetry G
- Symmetry breaking effects

- Flavon dynamics: quantum numbers, vevs, potential

$$
\begin{aligned}
\text { e.g. } G=A_{4} & m_{\nu}^{0}=\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & 0 & a \\
0 & a & 0
\end{array}\right)
\end{aligned} m_{E}^{0}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .\left\{\begin{array}{c}
m_{E}^{1}: H_{2} \text { invariant }
\end{array}\right.
$$

What accounts for the LO pattern of lepton observables?

- The flavour symmetry G
- Symmetry breaking effects
- $\mathrm{G} \rightarrow \mathrm{H}$ only
- Flavon dynamics: quantum numbers, vevs, potential

What accounts for the LO pattern of lepton observables?

- The flavour symmetry G
- Symmetry breaking effects

- $G \rightarrow H$ only
- Flavon dynamics: quantum numbers, vevs, potential

What accounts for the LO pattern of lepton observables?

- The flavour symmetry G
- Symmetry breaking effects

- $G \rightarrow$ H only
- in full generality
- complete and compact solution
- only some features of G and ρ are relevant
- no need of explicit construction of me or mv

G and ρ leading, in the symmetric limit, to lepton masses and mixings close to what observed

Solution - in 2 steps: masses first, then mixings

Step 1: find G and ρ leading, in the symmetric limit, to lepton masses close to what observed

- Definition of "close to what observed": lepton masses
$\left.\begin{array}{c||c|c||c|} & \begin{array}{c}\text { non zero entries } \\ \text { of the same order }\end{array} & \begin{array}{c}\text { allow hierarchy among } \\ \text { non-zero entries }\end{array} & \begin{array}{c}\text { (fully undetermined in } \\ \text { the symmetric limit) }\end{array} \\ \hline \hline \begin{array}{c}\text { charged } \\ \text { leptons }\end{array} & (0,0, A) & \begin{array}{c}(0, B, A) \\ (C, B, A)\end{array} \\ \hline \hline \begin{array}{c}\text { neutrinos } \\ \text { NH }\end{array} & (0,0, a) & (0,0,0) \\ \hline \begin{array}{c}\text { neutrinos } \\ \text { NH or IH }\end{array} & (a, a, a) & (0, b, a) \\ (c, b, a)\end{array}\right]$

Step 1: precise formulation of the problem

- Given each of the previous $3 \times 6=18$ mass patterns, find all G, ρ s.t.
- \forall invariant m_{E}, m_{v} the mass eigenvalues are in that form
- \exists invariant m_{E}, m_{v} with mass eigenvalues in that form and generic

Step 1: results charged lepton entries of the same order

lepton masses		decom	itions of U_{l} an	$U_{e^{c}}$	
(00A) (aaa)			none		
$(00 A) \quad(a a b)$	$\begin{array}{lll} \mathbf{1} & \overline{\mathbf{1}} & 1 \\ \overline{\mathbf{1}} & r \nsupseteq 1, \mathbf{1} \end{array}$	$\begin{array}{ll} 1 & \mathbf{1} \\ 1 & r \nsupseteq \overline{\mathbf{1}} \\ \mathbf{1} \end{array}$	$\begin{array}{ll} 1 & 2 \\ 1 & r \neq 2 \end{array}$		
$(00 A) \quad(a a 0)$	$\begin{array}{lll} \mathbf{1} & \mathbf{1}^{\prime} & \overline{\mathbf{1}} \\ \overline{\mathbf{1}} & r \nsupseteq \mathbf{1}, \overline{\mathbf{1}^{\prime}} \end{array}$	$\begin{array}{lll} \mathbf{1}^{\prime} & \mathbf{1} & \overline{1} \\ \overline{1}^{\prime} & r \nsupseteq \mathbf{1}, \overline{\mathbf{1}} \end{array}$	$\begin{array}{lll} \mathbf{1} & \mathbf{1} & \overline{\mathbf{1}} \\ \overline{\mathbf{1}} & r \nsupseteq \mathbf{1}, \overline{\mathbf{1}} \end{array}$	$\begin{array}{lll} \overline{\mathbf{1}} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & r \nsupseteq \overline{1} \end{array}$	$\frac{\mathbf{1}}{\overline{1}} \quad \begin{aligned} & 2 \\ & r \neq 2 \end{aligned}$
$(00 A) \quad(00 a)$	$\begin{array}{lll} 1 & \mathbf{1} \\ 1 & r \not \mathbf{1}^{\prime} \\ \mathbf{1}, \overline{\mathbf{1}^{\prime}} \end{array}$	$\begin{array}{lll} \mathbf{1} & \mathbf{1}^{\prime} & 1 \\ \overline{\mathbf{1}} & r \nsupseteq & 1, \overline{\mathbf{1}^{\prime}} \end{array}$	$\begin{array}{lll} 1 & \mathbf{1} & \mathbf{1} \\ 1 & r \nsupseteq \overline{\mathbf{1}} \end{array}$	$\begin{array}{lll} \mathbf{1} & \mathbf{1} & 1 \\ \overline{\mathbf{1}} & r \nsupseteq 1, \overline{\mathbf{1}} \end{array}$	$\begin{array}{ll} 1 & \mathbf{2} \\ 1 & r \nsupseteq \overline{\mathbf{2}} \end{array}$
$(00 A) \quad(c b a)$	$\begin{array}{ll} \hline 1 & 1^{\prime} \\ 1 & r \not 1^{\prime \prime} \\ 1^{\prime}, 1^{\prime \prime} \end{array}$	$\begin{array}{ll} \hline 1 & 1 \\ 1 & r \not 1^{\prime} \\ 1,1^{\prime} \end{array}$	$\begin{array}{lll} \hline \hline 1^{\prime} & 1 & 1 \\ 1^{\prime} & r \nsupseteq 1 \end{array}$	$\begin{array}{lll} \hline \hline 1 & 1 & 1 \\ 1 & r \nsupseteq 1 \end{array}$	
$(00 A) \quad(0 b a)$	$\begin{array}{lll} 1 & 1^{\prime} & \mathbf{1} \\ 1 & r \nsupseteq & 1^{\prime}, \overline{\mathbf{1}} \end{array}$	$\begin{array}{lll} \mathbf{1} & 1^{\prime} & 1 \\ \overline{\mathbf{1}} & r \nsupseteq 1,1^{\prime} \end{array}$	$\begin{array}{lll} \mathbf{1} & 1 & 1 \\ \mathbf{1} & r \nsupseteq 1 \\ \hline \end{array}$	$\begin{array}{lll} 1 & 1 & \mathbf{1} \\ 1 & r \nsupseteq 1, \overline{\mathbf{1}} \end{array}$	

- dimension of the irreps

The results only depend on few features of the irreducible components: - nature of the irreps (complex or real)

- equivalence of the irreps

Step 1: results hierarchies allowed

lepton masses		decompositio	of U_{l} and $U_{e^{c}}$	
(0BA) (aaa)	none			
(0BA) (aab)	$\begin{array}{lll} \mathbf{1} & \overline{\mathbf{1}} & 1 \\ \overline{\mathbf{1}} & \mathbf{1} & r \neq 1 \end{array}$	$\begin{array}{lll} 1 & \mathbf{1} & \overline{\mathbf{1}} \\ 1 & \overline{\mathbf{1}} & r \neq \mathbf{1} \end{array}$		
$(0 B A) \quad(a a 0)$	$\begin{array}{lll}\overline{\mathbf{1}} & \mathbf{1} & \mathbf{1}^{\prime} \\ \mathbf{1} & \overline{\mathbf{1}} & r \neq \overline{\mathbf{1}^{\prime}}\end{array}$	$\begin{array}{llll}\mathbf{1} & \mathbf{1}^{\prime} & \overline{\mathbf{1}} \\ \overline{\mathbf{1}} & \overline{\mathbf{1}^{\prime}} & r \neq \mathbf{1}\end{array}$	$\begin{array}{lll}\overline{1} & \mathbf{1} & \overline{1} \\ \overline{1} & \overline{1} & r \neq 1\end{array}$	$\begin{array}{lll}\overline{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \overline{1} & r \neq \overline{1}\end{array}$
(0BA) (00a)	$\begin{array}{lll}1 & \mathbf{1} & \mathbf{1}^{\prime} \\ 1 & \overline{\mathbf{1}} & r \neq \overline{\mathbf{1}^{\prime}}\end{array}$	$\begin{array}{llll}\mathbf{1} & \mathbf{1}^{\prime} & 1 \\ \mathbf{1} & \mathbf{1}^{\prime} & r \neq 1\end{array}$	$\begin{array}{llll}1 & \mathbf{1} & \mathbf{1} \\ 1 & \overline{\mathbf{1}} & r \neq \overline{\mathbf{1}}\end{array}$	$\begin{array}{llll}\mathbf{1} & \mathbf{1} & 1 \\ \mathbf{1} & \overline{\mathbf{1}} & r \neq 1\end{array}$
(0BA) (cba)	$\begin{array}{lll} 1 & 1^{\prime} & 1^{\prime \prime} \\ 1 & 1^{\prime} & r \neq 1^{\prime \prime} \end{array}$	$\begin{array}{lll} 1 & 1 & 1^{\prime} \\ 1 & 1 & r \neq 1^{\prime} \end{array}$	$\begin{array}{lll}1^{\prime} & 1 & 1 \\ 1^{\prime} & 1 & r \neq 1\end{array}$	$\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & r \neq 1\end{array}$
(0BA) (0ba)	$\begin{array}{lll}1 & 1^{\prime} & \mathbf{1} \\ 1 & 1^{\prime} & r \neq \overline{\mathbf{1}}\end{array}$	$\begin{array}{llll}1 & \mathbf{1} & 1^{\prime} \\ 1 & \overline{\mathbf{1}} & r \neq 1^{\prime}\end{array}$	$\begin{array}{lll}1 & 1 & \mathbf{1} \\ 1 & 1 & r \neq \overline{\mathbf{1}}\end{array}$	$\begin{array}{lll}\mathbf{1} & 1 & 1 \\ \overline{1} & 1 & r \neq 1\end{array}$
(CBA) (aaa)				
$(C B A) \quad(a a b)$	$\begin{array}{lll} \hline 1 & 1 & \overline{1} \\ 1 & \overline{1} & 1 \end{array}$			
$(C B A) \quad(a a 0)$	$\begin{array}{llll}\mathbf{1} & \mathbf{1}^{\prime} & \overline{\mathbf{1}} \\ \overline{\mathbf{1}} & \overline{\mathbf{1}^{\prime}} & \mathbf{1}\end{array}$	$\begin{array}{lll} \hline 1 & \overline{1} \\ \overline{1} & \overline{1} & 1 \end{array}$		
(CBA) (00a)	$\begin{array}{lll}1 & \mathbf{1} & \mathbf{1}^{\prime} \\ 1 & \overline{\mathbf{1}} & \overline{\mathbf{1}^{\prime}}\end{array}$	$\begin{array}{lll} \hline 1 & \mathbf{1} & \mathbf{1} \\ 1 & \overline{1} & \overline{1} \end{array}$		
$(C B A) \quad(c b a)$	$\begin{array}{lll}1 & 1^{\prime} & 1^{\prime \prime} \\ 1 & 1^{\prime} & 1^{\prime \prime}\end{array}$	$\begin{array}{lll}1 & 1 & 1^{\prime} \\ 1 & 1 & 1^{\prime}\end{array}$	$\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1\end{array}$	
(CBA) (0ba)	$\begin{array}{lll}1 & 1^{\prime} & \mathbf{1} \\ 1 & 1^{\prime} & \overline{1}\end{array}$	$\begin{array}{lll}1 & 1 & \mathbf{1} \\ 1 & 1 & \overline{1}\end{array}$		

Comments

- 3 degenerate neutrinos in the symmetric limit cannot be obtained
- no d=3 irreps
- $d=2$ irreps can only appear if $m_{e}=m_{\mu}=0$ in the symmetric limit

Sketch of the proof (valid for n families)

- subspaces in flavour space associated to (zero or non-zero) degenerate m_{E} masses are invariant under both U_{I} and $U_{\text {ec }}$
- the U_{I} and $U_{\text {ec }}$ sub-representations corresponding to non-zero charged lepton masses are conjugated to each other and irreducible.
- the U_{I} and $U_{\text {ec }}$ sub-representations, nor any of their irreducible components, are conjugated to each other
- each set of degenerate non-zero neutrino masses corresponds to either a real irrep or to a pair of conjugated complex irreps
- none of the remaining irreps (correspond to vanishing neutrino masses) should be real, nor any of them should be conjugated to any other

Step 2: select the cases also leading, in the symmetric limit, to a PMNS matrix close to what observed

- Definition of "close to what observed": PMNS matrix
- $\left|\bigcup_{13}\right| \leqslant 0.16 \quad|U|=\left(\begin{array}{lll}0.798 \rightarrow 0.843 & 0.517 \rightarrow 0.584 & 0.137 \rightarrow 0.158 \\ 0.232 \rightarrow 0.520 & 0.445 \rightarrow 0.697 & 0.617 \rightarrow 0.789 \\ 0.249 \rightarrow 0.529 & 0.462 \rightarrow 0.708 & 0.597 \rightarrow 0.773\end{array}\right)$
- $\left|\cup_{21}\right|,\left|\cup_{31}\right|$ can be as small as 0.25
- all other entries larger than 0.45
- Allowed zero entries: \bigcup_{13} or (less appealing) $\bigcup_{21}, \bigcup_{31}$ (not both)

Results

- $\mathrm{U}_{13}=0$: tension IH
- $\mathrm{U}_{\mathrm{ij}} \neq 0$: tension U_{13} v masses solution trivial
- $\mathrm{U}_{31,32} \neq 0$: tension $\mathrm{U}_{13}, \mathrm{U}_{31,32}$, v masses
$\left.\begin{array}{|c|c|ccc|c|}\hline \text { lepton masses } & \nu \text { hierarchy } & \text { irrep decomposition } & \text { zeros } \\ \hline \begin{array}{c}(00 A) \\ (a a 0)\end{array} & \mathrm{IH} & \begin{array}{l}\mathbf{1} \\ \overline{\mathbf{1}}\end{array} & \mathbf{1} & r \nsupseteq \mathbf{1} \\ \mathbf{1}, \overline{\mathbf{1}}\end{array}\right]$ none (13)

Results

- $\mathrm{U}_{13}=0$: tension IH
- $\bigcup_{i j} \neq 0$: tension U_{13} v masses solution trivial
- $\mathrm{U}_{31,32} \neq 0$: tension $\mathrm{U}_{13}, \mathrm{U}_{31,32}$, v masses

lepton masses	ν hierarchy	irrep decomposition	zeros
$\begin{aligned} & \hline(00 A) \\ & (a a 0) \end{aligned}$	IH	$\begin{array}{lll} \hline \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \overline{1} & r \nsupseteq & \mathbf{1}, \overline{\mathbf{1}} \end{array}$	none (13)
$\begin{gathered} \hline(00 A) \\ (0 b a) \end{gathered}$	NH or IH	$\begin{array}{ll} \hline 1 & 1 \\ 1 & \mathbf{1} \\ 1 & r \nsupseteq 1, \overline{\mathbf{1}} \end{array}$	31,33
$\begin{gathered} (00 A) \\ (c b a) \end{gathered}$	NH or IH	$\begin{array}{ll} 1 & 1 \\ 1 & 1^{\prime} \\ 1 & r \nsupseteq 1,1^{\prime} \end{array}$	31, 32, 33
$\begin{gathered} (00 A) \\ (c b a) \end{gathered}$	NH or IH	$\begin{array}{lll} 1 & 1 & 1 \\ 1 & r \nsupseteq 1 \end{array}$	none
$\begin{gathered} \hline \hline(0 B A) \\ (a a 0) \end{gathered}$	IH	$\begin{array}{lll} \hline \hline \overline{1} & \overline{1} & 1 \\ 1 & 1 & r \neq \overline{1} \end{array}$	13
$\begin{gathered} (0 B A) \\ (c b a) \end{gathered}$	NH or IH	$\begin{array}{lll} 1 & 1 & 1 \\ 1 & 1 & r \neq 1 \end{array}$	none
$\begin{gathered} (C B A) \\ (a a 0) \end{gathered}$	IH	$\begin{array}{lll} \hline \overline{1} & \overline{1} & 1 \\ 1 & 1 & \overline{1} \end{array}$	13, 23, 33
$\begin{gathered} (C B A) \\ (c b a) \end{gathered}$	NH or IH	$\begin{array}{lll} \hline 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}$	none

Results

- $\mathrm{U}_{13}=0$: tension IH

lepton masses	ν hierarchy	irrep decomposition	zeros
$\begin{aligned} & \hline(00 A) \\ & (a a 0) \end{aligned}$	IH	$\begin{array}{lll} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \overline{\mathbf{1}} & r \nsupseteq \mathbf{1}, \overline{\mathbf{1}} \end{array}$	none (13)
$\begin{aligned} & \hline(00 A) \\ & (0 b a) \end{aligned}$	NH or IH	$\begin{array}{ll} \hline 1 & 1 \\ 1 & r \nsupseteq 1, \overline{\mathbf{1}} \end{array}$	31, 33
$\begin{aligned} & (00 A) \\ & (c b a) \end{aligned}$	NH or IH	$\begin{array}{ll} 1 & 1 \\ 1 & r \not 1^{\prime} \\ 1,1^{\prime} \end{array}$	31, 32, 33
$\begin{aligned} & (00 A) \\ & (c b a) \end{aligned}$	NH or IH	$\begin{array}{lll} 1 & 1 & 1 \\ 1 & r \nsupseteq 1 \end{array}$	none
$\begin{gathered} \hline \hline(0 B A) \\ (a a 0) \end{gathered}$	IH	$\begin{array}{lll} \hline \hline \mathbf{1} & 1 & 1 \\ 1 & 1 & r \neq \overline{1} \end{array}$	13
$\begin{gathered} \hline(0 B A) \\ (c b a) \end{gathered}$	NH or IH	$\begin{array}{lll} \hline 1 & 1 & 1 \\ 1 & 1 & r \neq 1 \end{array}$	none
$\begin{gathered} \hline(C B A) \\ (a a 0) \end{gathered}$	IH	$\begin{array}{lll} \hline 1 & 1 & 1 \\ 1 & 1 & \overline{1} \end{array}$	13, 23,33
$\begin{gathered} \hline(C B A) \\ (c b a) \end{gathered}$	NH or IH	$\begin{array}{lll} \hline 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}$	none

Results

- $\mathrm{U}_{13}=0$: tension IH
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { lepton masses } & \nu \text { hierarchy } & \text { irrep decomposition } & \text { zeros } \\ \hline \begin{array}{c}(00 A) \\ (a a 0)\end{array} & \mathrm{IH} & \begin{array}{l}\mathbf{1} \\ \mathbf{1}\end{array} & \mathbf{1} \nmid \mathbf{1} \\ \mathbf{1}\end{array}\right)$
- $U_{31,32} \neq 0$: tension $\mathrm{U}_{13}, \mathrm{U}_{31,32}$, v masses

| $(0 B A)$
 $(a a 0)$ | IH | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| :---: | :---: | :---: | :--- | :--- | :---: |
| $\mathbf{1}$ | $\mathbf{1}$ | $r \neq \overline{\mathbf{1}}$ | $\mathbf{1} 3$ | |
| $(0 B A)$
 $(c b a)$ | NH or IH | 1 1 1
 1 1 $r \neq 1$ | none | |
| $(C B A)$
 $(a a 0)$ | IH | $\mathbf{1}$
 $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| $\mathbf{1}$ | $\overline{\mathbf{1}}$ | $\mathbf{1 3}, 23,33$ | | |
| $(C B A)$
 $(c b a)$ | NH or IH | 1 1 1
 1 1 1 | none | |

Results

- $\mathrm{U}_{13}=0$: tension IH

lepton masses	ν hierarchy	irrep decomposition	zeros
$\begin{aligned} & \hline(00 A) \\ & (a, 0) \end{aligned}$	IH	$\begin{array}{lll} \hline \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \overline{\mathbf{1}} & r \nsupseteq \mathbf{1}, \overline{\mathbf{1}} \end{array}$	none (13)
$\begin{gathered} \hline(00 A) \\ (0 b a) \\ \hline \end{gathered}$	NH or IH	$\begin{array}{ll} \hline 1 & 1 \\ 1 & r \nsupseteq 1, \overline{\mathbf{1}} \end{array}$	31,33
$\begin{gathered} (00 A) \\ (c b a) \end{gathered}$	NH or IH	$\begin{array}{ll} 1 & 1 \\ 1 & r \not 1^{\prime} \\ 1 \end{array}$	31, 32,33
$\begin{gathered} \hline(00 A) \\ (c b a) \\ \hline \end{gathered}$	NH or IH	$\begin{array}{lll} \hline 1 & 1 & 1 \\ 1 & r \nsupseteq & 1 \\ \hline \end{array}$	none

- $U_{31,32} \neq 0$: tension $\mathrm{U}_{13}, \mathrm{U}_{31,32}$, v masses

$\begin{gathered} \hline \hline(0 B A) \\ (a a 0) \end{gathered}$	IH	$\begin{array}{lll} \hline \hline \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & r \neq \overline{\mathbf{1}} \\ \hline \end{array}$	13
$\begin{gathered} \hline(0 B A) \\ (c b a) \end{gathered}$	NH or IH	$\begin{array}{lll} \hline \hline 1 & 1 & 1 \\ 1 & 1 & r \neq 1 \end{array}$	none
$\begin{gathered} \hline(C B A) \\ (a a 0) \end{gathered}$	IH	$\begin{array}{lll} \hline \hline 1 & 1 & 1 \\ 1 & 1 & \overline{1} \end{array}$	13, 23, 33
$\begin{gathered} \hline(C B A) \\ (c b a) \\ \hline \end{gathered}$	NH or IH	$\begin{array}{lll} \hline \hline 1 & 1 & 1 \\ 1 & 1 & 1 \\ \hline \end{array}$	none

Sketch of the proof (valid for n families)

- $U=H_{E} P_{E} V D^{-1} P_{\nu}^{-1} H_{\nu}^{-1}$
- V commutes with U_{I}
- D maximal rotation, if $U_{\|}$contains conjugated complex irreps (Dirac substructure)
- P permutations possibly needed to bring mass eigenvalues in standard ordering
- H rotations up to which U is defined in the symmetric limit
- (...) $H_{v}=H^{\star} v(\ldots)$ for generic neutrino mass pattern (...)
- (...) $H_{E}=H_{E}(\ldots)$ for generic charged lepton mass pattern (...)
- No need to write mass matrices explicitly

LO pattern of lepton masses and mixing determined by symmetry breaking effects from $\mathrm{G} \rightarrow \mathrm{H}$
$m_{E}=0$ or $m_{v}=0$ in the symmetric limit symmetry breaking corrections generic

Results

- The results obtained above easily extend
- The allowed cases only depend on the lepton mass pattern and irrep decomposition after G breaking
- An hierarchy between non zero masses can be understood in terms of $\mathrm{G} \rightarrow \mathrm{H}$

Results (as before)

- $\mathrm{U}_{13}=0$: tension IH
- $\bigcup_{i j} \neq 0$: tension U_{13} v masses solution trivial
- $\mathrm{U}_{31,32} \neq 0$: tension $\mathrm{U}_{13}, \mathrm{U}_{31,32}$, v masses

lepton masses	ν hierarchy	irrep decomposition	zeros
$\begin{gathered} (00 A) \\ (a a 0) \end{gathered}$	IH	$\begin{array}{lll} \overline{1} & \mathbf{1} & \overline{\mathbf{1}} \\ \overline{1} & r \nsupseteq & 1, \overline{1} \end{array}$	none (13)
$\begin{gathered} (00 A) \\ (0 b a) \end{gathered}$	NH or IH	$\begin{array}{lll} 1 & 1 & \mathbf{1} \\ 1 & r \nsupseteq 1, \overline{\mathbf{1}} \end{array}$	31,33
$\begin{gathered} (00 A) \\ (c b a) \\ \hline \end{gathered}$	NH or IH	$\begin{array}{ll} 1 & 1 \\ 1 & r \not 1^{\prime} \\ 1 \end{array}$	31, 32, 33
$\begin{gathered} (00 A) \\ (c b a) \end{gathered}$	NH or IH	$\begin{array}{lll} 1 & 1 & 1 \\ 1 & r \nsupseteq 1 \end{array}$	none
$\begin{gathered} \hline \hline(0 B A) \\ (a a 0) \end{gathered}$	IH	$\begin{array}{lll} \hline \hline \overline{\mathbf{1}} & \overline{1} & 1 \\ 1 & 1 & r \neq \overline{1} \end{array}$	13
$\begin{gathered} (0 B A) \\ (c b a) \end{gathered}$	NH or IH	$\begin{array}{lll} \hline 1 & 1 & 1 \\ 1 & 1 & r \neq 1 \end{array}$	none
$\begin{gathered} (C B A) \\ (a a 0) \end{gathered}$	IH	$\begin{array}{lll} \hline \overline{1} & \overline{1} & 1 \\ 1 & 1 & \overline{1} \end{array}$	13,23, 33
$\begin{gathered} (C B A) \\ (c b a) \end{gathered}$	NH or IH	$\begin{array}{lll} \hline 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}$	none

Results (as before)

- $\mathrm{U}_{13}=0$: tension IH

lepton masses	ν hierarchy	irrep decomposition	zeros
$\begin{aligned} & \hline(00 A) \\ & (a a 0) \end{aligned}$	IH	$\begin{array}{lll} \hline \hline \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \overline{\mathbf{1}} & r \nsupseteq \mathbf{1}, \overline{\mathbf{1}} \end{array}$	none (13)
$\begin{gathered} (00 A) \\ (0 b a) \end{gathered}$	NH or IH	$\begin{array}{ll} 1 & 1 \\ 1 & r \nsupseteq 1, \\ 1 \end{array}$	31,33
$\begin{gathered} (00 A) \\ (c b a) \end{gathered}$	NH or IH	$\begin{array}{ll} 1 & 1 \\ 1 & r \not 1^{\prime} \\ 1,1^{\prime} \end{array}$	31, 32, 33
$\begin{gathered} (00 A) \\ (c b a) \end{gathered}$	NH or IH	$\begin{array}{lll} 1 & 1 & 1 \\ 1 & r \nsupseteq 1 \end{array}$	none
$\begin{gathered} \hline \hline(0 B A) \\ (a a 0) \end{gathered}$	IH	$\begin{array}{lll} \hline \hline \mathbf{1} & \mathbf{1} & 1 \\ 1 & 1 & r \neq \overline{1} \end{array}$	13
$\begin{gathered} \hline(0 B A) \\ (c b a) \end{gathered}$	NH or IH	$\begin{array}{lll} \hline 1 & 1 & 1 \\ 1 & 1 & r \neq 1 \end{array}$	none
$\begin{gathered} \hline(C B A) \\ (a a 0) \end{gathered}$	IH	$\begin{array}{lll} \hline \hline 1 & 1 & 1 \\ 1 & 1 & 1 \\ \hline \end{array}$	13, 23, 33
$\begin{gathered} \hline(C B A) \\ (c b a) \end{gathered}$	NH or IH	$\begin{array}{lll} \hline \hline 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}$	none

Results (as before)

- $\mathrm{U}_{13}=0$: tension IH

lepton masses	ν hierarchy	irrep decomposition	zeros
$\begin{aligned} & \hline(00 A) \\ & (a, 0) \end{aligned}$	IH	$\begin{array}{lll} \hline \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \overline{\mathbf{1}} & r \nsupseteq \mathbf{1}, \overline{\mathbf{1}} \end{array}$	none (13)
$\begin{gathered} \hline(00 A) \\ (0 b a) \\ \hline \end{gathered}$	NH or IH	$\begin{array}{ll} \hline 1 & 1 \\ 1 & r \nsupseteq 1, \overline{\mathbf{1}} \end{array}$	31,33
$\begin{gathered} (00 A) \\ (c b a) \end{gathered}$	NH or IH	$\begin{array}{ll} 1 & 1 \\ 1 & r \not 1^{\prime} \\ 1 \end{array}$	31, 32,33
$\begin{gathered} \hline(00 A) \\ (c b a) \\ \hline \end{gathered}$	NH or IH	$\begin{array}{lll} \hline 1 & 1 & 1 \\ 1 & r \nsupseteq & 1 \\ \hline \end{array}$	none

- $\mathrm{U}_{31,32} \neq 0$: tension $\mathrm{U}_{13}, \mathrm{U}_{31,32}$, v masses

$\begin{gathered} \hline \hline(0 B A) \\ (a a 0) \\ \hline \end{gathered}$	IH	$\begin{array}{lll} \hline 1 & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & 1 & r \neq \overline{1} \\ \hline \end{array}$	13
$\begin{gathered} (0 B A) \\ (c b a) \end{gathered}$	NH or IH	$\begin{array}{lll} \hline \hline 1 & 1 & 1 \\ 1 & 1 & r \neq 1 \end{array}$	none
$\begin{gathered} \hline(C B A) \\ (a a 0) \end{gathered}$	IH	$\begin{array}{lll} \hline \hline 1 & 1 & 1 \\ 1 & 1 & 1 \\ \hline \end{array}$	13, 23, 33
$\begin{gathered} \hline(C B A) \\ (c b a) \end{gathered}$	NH or IH	$\begin{array}{lll} \hline \hline 1 & 1 & 1 \\ 1 & 1 & 1 \\ \hline \end{array}$	none

Caveat (in progress)

- We assumed
- existence of symmetric limit for m_{v}
- high scale origin of m_{v}
- Consider for example the case of the see-saw: $m_{v}=-\left(m_{D}\right)^{\top} M^{-1} m_{D}$
- M non-singular in the symmetric limit
\rightarrow low-energy discussion is complete (symmetric limit for m_{v})
- M singular in the symmetric limit
\rightarrow low-energy discussion is incomplete (no symmetric limit for mv)

Conclusions

- It is possible to perform a systematic analysis of all G and ρ leading, in the symmetric limit, to lepton masses and mixings close to what observed
- In the case in which symmetry breaking effects are essential, it is possible to perform a systematic analysis of all $\mathrm{G} \rightarrow \mathrm{H}$ breaking patterns leading to lepton masses and mixings close to what observed, in the assumption that all breaking effects that are H invariant are allowed
- We characterise solutions in terms of the decomposition of ρ into irreducible components
- If the NH pattern will be confirmed, non-trivial solutions lead to tensions in the PMNS matrix, due to the prediction that $\mathrm{U}_{13}=\mathrm{O}(1)$ and that $\mathrm{U}_{21}=0$ or $\mathrm{U}_{31}=0$
- In order to avoid the tension one needs to consider models in which
- neutrino masses do not originate at high scales
- neutrino masses originate at high scale, but some heavy masses vanish in the symmetric limit
- symmetry breaking effects and the flavon spectrum are essential

