Survey of
 Flavour Anomalies

Roman Zwicky
Edinburgh University \& University of Zurich (visiting)

Experimental talks: Pepe-Altarelli \& Harnew

Global-Fit:
BSM:

Mahmoudi
Crivellin, King (next)

Workshop on Beyond the Standard Model Physics
2-10 September 2017 - Corfu

Overview

- 1. Introduction
[a] Overview Flavour Anomalies
[b] Flavour Universality (FU)
[c] Effective Hamiltonian(s) \& Angular Distributions
- 2. Tree-level
[a] News on B \rightarrow D * form factors
[b] $\left|\mathrm{V}_{\mathrm{ub}}\right|,\left|\mathrm{V}_{\mathrm{cb}}\right|$ exclusive vs inclusive - tension eases
[c] $R_{D}, R_{D^{*}}$ from $\left.B \rightarrow D^{*}\right) \mid \mathrm{v}:[\mathrm{l}=\mathrm{e}, \mu \mathrm{vs} \tau]$
- 3. FCNC
[a] $\mathrm{B} \rightarrow \mathrm{K}^{*} l l$-type angular analysis - missing pieces
[b] $\boldsymbol{R}_{K}, \boldsymbol{R}_{K^{*}}[\mathrm{e}$ vs $\mu] \&$ QED corrections
- Outlook

[A] Flavour Anomalies

in

 expected (FCNC) and unexpected (tree) places

95' pre b-factory

15'

... in a few (un)expected places

$\mathrm{b} \rightarrow \mathrm{s}$ FCNC's

Angular Observables
(e.g. $A_{\mathrm{FB}}, P_{5}^{\prime}$)

TD-CPV: $B_{s} \rightarrow \phi \gamma$
$R_{K^{*} / \phi}^{\mu \mu} \equiv \frac{\mathcal{B}\left(B^{0} \rightarrow K^{* 0} \mu \mu\right)}{\mathcal{B}\left(B_{s}^{0} \rightarrow \phi \mu \mu\right)}$
$R_{K^{(*)}}=\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \mu \mu\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} e e\right)}$

$$
R_{D^{(*)}}=\frac{\mathcal{B}\left[B \rightarrow D^{(*)} \tau \nu\right]}{\mathcal{B}\left[B \rightarrow D^{(*)} \ell \nu\right]}
$$

Lepton Flavour Universality Violation (LFUV)?
$\ell=e, \mu$

(b) Flavour Universality (FU)

- Yukawa $=0$ global symmetry: $\mathrm{G}_{\mathrm{F}}=\mathrm{U}(3)^{5}=\mathrm{G}_{\mathrm{q}} \times \mathrm{G}_{\mathrm{I}}, \quad \mathrm{G}_{\mathrm{q}}=\mathrm{U}(3)_{\mathrm{Q}} \times \mathrm{U}(3) \mathrm{UR} \times \mathrm{U}(3)_{\mathrm{DR}}$

Yukawa $\neq 0$ breaking down: $\quad \mathrm{G}_{\mathrm{q}}=\mathrm{U}(3)_{\mathrm{q}}{ }^{3} \rightarrow \mathrm{U}(\mathrm{I})_{\text {Baryon }}$

- SM: FU-broken : $m_{u} \neq m_{c} \neq m_{t}$ but not couplings $g_{\text {weak }}=g_{u}=g_{c}=g_{t}$

SM: Flavour Violation (FV) by misalignment of Yukawa matrices:

$$
\mathrm{V}_{\text {CKM }}=\mathrm{S}_{\mathrm{D}} \mathrm{Su}^{\dagger} \neq 1
$$

(i) charged $\mathrm{FV} \mathrm{b} \rightarrow \mathrm{W}^{*} \mathrm{c}$ (tree)
(ii) neutral $\mathrm{FV}(F C N C) \mathrm{b} \rightarrow \mathrm{s} \gamma$

Flavour Universality is not a symmetry of the SM

- Yet for leptons: control the breaking in terms of (trivial) kinematic factors and QED corrections (size?)

(c) $\mathrm{H}_{\text {eff }} \&$ angular distributions

- Flavour physics: = successful EFT integrating out dof a la Wilson
energy

amplitude $\mathcal{A}=\langle X Y Z| H_{\text {eff }}|B\rangle=\sum_{i} C_{i}\left(m_{b}\right)\langle X Y Z| \underbrace{O_{i}\left(m_{b}\right)}_{\substack{\bar{q}_{1} \Gamma_{1} q_{2} \bar{b} \Gamma_{2} q_{3} \\ \downarrow}}|B\rangle$

Wilson coefficient
UV physics (BSM?)

$$
\begin{gathered}
\text { M-element } \\
\text { IR physics (non-perturbative) }
\end{gathered}
$$

- e.g. $\mathrm{d}=6$ Heff of with 10 operators $H^{\mathrm{eff}}=-\frac{4 G_{F}}{\sqrt{2}} \frac{\alpha}{4 \pi} V_{\mathrm{ts}} V_{\mathrm{tb}}^{*} \sum_{i=V, A, S, P, \mathcal{T}}\left(C_{i} O_{i}+C_{i}^{\prime} O_{i}^{\prime}\right)$.

$$
\begin{array}{ll}
O_{S(P)}=\bar{s}_{L} b \bar{\ell}\left(\gamma_{5}\right) \ell, & O_{V(A)}
\end{array}=\bar{s}_{L} \gamma^{\mu} b \ell \gamma_{\mu}\left(\gamma_{5}\right) \ell,
$$

S - and P-wave $(\ell=0,1)$

- In $\mathrm{B} \rightarrow \mathrm{V}\left(\rightarrow \mathrm{S}_{1} \mathrm{~S}_{2}\right) \ell_{\mathrm{a}} \ell_{\mathrm{b}}$ (semi-leptonic/radiative - this talk)

$$
\frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{\ell} d \cos \theta_{K} d \phi}=\sum_{m, l_{l}=0.2, l_{K}=0 . . J_{K}} \underbrace{G_{m}^{l_{m}, l_{l}} Y_{l_{k}}\left(\theta_{K}, \phi\right) Y_{l, m}\left(\theta_{l}, 0\right)}_{\mid A_{S, \cdot,\left.\right|^{2}}}
$$

partial wave

$$
\ell_{1-(\ell \ell \text {-pair })}
$$

- higher partial waves D, F, .. - $\ell=2,3, \ldots$?

1) higher dim operators - suppressed by further powers $\left(\mathrm{m}_{\mathrm{b}} / \mathrm{m}_{\mathrm{w}}\right)^{\left(e^{-1)}\right.}$
2) QED no suppression of higher waves (IR effect) Gratrex. Hopfer, RZ'15
\Rightarrow opportunity to probe QED-effects experimentally

Tree-level* tensions

- Dynamics = short distance (no sizeable long distance contributions) \checkmark short distance form factor(s) (e.g. lattice, sum rules ..)
- Focus semi-leptonic decays
- Hadron Final state:
$\mathrm{J}=0 \Leftrightarrow 1$ scalar form factor

$\mathrm{J}=1 \Leftrightarrow 3$ vector form factors
1 scalar form factor (enters proportional to lepton mass)
- flavour violation at tree-level of (V-A)-type in SM.

(a) News on $B \rightarrow D_{(j=1)}^{*}$ form factors

- Not so easy to compute. low recoil (endpt): lattice QCD with effective theories* large recoil (fast D*): LCSR
- Low-recoil expansion \& HQET to compute exp.-parameters Caprini, Lellouch, Neubert'97
- Belle 1702.01521 release (first-time) angular distributions for $\mathbf{B} \rightarrow \mathbf{D}^{*}(\mathbf{e}, \boldsymbol{\mu}) \mathbf{v}$

- Used by theorists to reassess the situation for

IV cbld*: Bigi, Gambino,Schacht 1703.06124 Grinstein \& Kobach 1703.08170
Bernlocher, Ligeti, Papucci, Robinson 1708.07134
$R_{D^{*}} \quad$ Gambino,Schacht 1707.09509

- a) finite width effect small
b) quasi-stable $\mathrm{B} \rightarrow \mathrm{D}$ form factors lattice results HPQCD'15, FNAL'15
c) only 1 form factor at zero recoil, beyond zero recoil on the way ,,,

(b) $\mathrm{V}_{\mathrm{cb}} \& \mathrm{~V}_{\mathrm{ub}}$ inclusive (optical thm \& OPE) vs exclusive

Gambino@Hiaqs-Maxwell'17

$$
10^{3}\left|\mathrm{~V}_{\mathrm{cb}}\right|
$$

- IV ${ }_{\text {cbl }}$-tension eased by angular data Belle'17

$$
\left|V_{\mathrm{cb}}\right|_{D^{*}}=41.7(2) \cdot 10^{-3}
$$

Bigi, Gambino, Schacht'17

- IVubl-tension eased by new BaBar analysis. "needs checks" Gambino'17
- Another Vub-mode $\left|V_{\mathrm{ub}}\right|_{\rho \ell \nu}=3.3(3) \cdot 10^{-3}$ Bharucha, Straub, RZ '15
- Yet instructive to contemplate on right-handed currents $\varepsilon_{\mathbf{R}}$

$$
\begin{aligned}
\left|V_{c b}\right|_{\mathrm{incl}} & =\left|V_{c b}\right|\left(1+\frac{1}{2} \epsilon^{2}\right) \\
\left|V_{c b}\right|_{D^{*}} & =\left|V_{c b}\right|(1+\epsilon) \\
\left|V_{c b}\right|_{D} & =\left|V_{c b}\right|(1-\epsilon)
\end{aligned}
$$

no good as D and D*

(b) $\mathrm{R}_{\mathrm{D}}{ }^{*}$ Lepton Flavour Universality I

$$
R_{D^{(*)}}=\frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \nu\right)}{\mathcal{B}\left(B \rightarrow D^{(*)}(e, \mu) \nu\right)}
$$

New results:

LHCb@FPCP'17
$R_{D^{*}}=0.285(19)(25)(14)$

1) Using Bellell angular-data Schacht et al (cf. Robinson et al 17xx.)

$$
\mathrm{R}_{\mathrm{D}^{*}}=0.262(10) \text { [as average of diff. methods/imputs] }
$$

compare $R_{D^{*}}=0.252(3)$, Fajfer et al'13

$$
R_{D^{*}}=0.304(13)(7) \mathrm{HFAG}
$$

2) τ difficult particle: 2 exclusive modes saturate incl. rate?

$$
\begin{aligned}
& B F\left(B \rightarrow X_{c} \tau \nu\right)= \begin{cases}2.42(06) \cdot 10^{-2} & \text { Ligeti, Tackman(theory) } \\
2.41(23) \cdot 10^{-2} & \text { LEP(experiment) }\end{cases} \\
& B F(B \rightarrow D \tau \nu)+B F\left(B \rightarrow D^{*} \tau \nu\right)=\left\{\begin{array}{lll}
\text { Kamenik,Fajfer } 12 & \text { BaBar } 12, \text { LHCb }{ }^{\prime} 15 & \text { Belle } 15 \\
2.01(7) \cdot 10^{-2} & 2.78(25) \cdot 10^{-2} & 2.39(32) \cdot 10^{-2}
\end{array}\right.
\end{aligned}
$$

$\mathrm{D}(2400)$ states contribute ca 10% [PDG]

Perspectives (reducing errors)

- Theory:

1) CLN-expansion can be partly improved $O\left(a_{s}{ }^{2}, a_{s} / m_{c}, 1 / m_{c}{ }^{2}\right)$
2) lattice computation on the way ...
3) $\mathrm{B} \rightarrow \mathrm{D}^{*} \tau \vee$ angular distributions (LHCb?) $=$ info on unconstrained scalar form factor (contributes 10% to $\mathrm{R}_{\mathrm{D}^{*}}$)

- Experiment:

1) Bellell@50/ab competitive with theory error
2) Bellell redo LEP's B->X $\mathrm{X}_{\mathrm{c}} \tau \mathrm{v}$
3) LHCb Run2 4\% on $\mathrm{R}_{\mathrm{D}^{*}}$

3.FCNC-tensions in $\mathbf{b} \rightarrow \mathbf{s} \ell \ell$

long distance contamination except LFU

(a) Tension angular observables $B \rightarrow K^{*} \mu \mu$

2013

- e.g. P5' odd lepton partial wave $A_{F B}$-like

$$
\left.\left\langle P_{5}^{\prime}\right\rangle_{\mathrm{bin}}\right|_{\mathrm{LHCb}}=\frac{\left\langle\operatorname{Re}\left[G_{1}^{2,1}\right]\right\rangle_{\text {bin }}}{2 \sqrt{3} \mathcal{N}_{\text {bin }}^{\prime}} \quad \begin{gathered}
\text { very sensitive to } \\
\text { polarisation }
\end{gathered}
$$

\leftrightarrows need to understand what is behind polarisation (dynamics)

$B \rightarrow K^{(*)}$ Il under microscope

- SM Wilson-coeff: $\mathbf{C}_{\mathbf{s}}=\mathbf{C}_{\mathbf{P}}=\mathbf{C}_{\mathbf{T}}=\mathbf{0}, \mathbf{C}_{\mathbf{V}}=\mathbf{C}_{9}+\boldsymbol{\delta} \mathbf{C}_{9}{ }^{\text {eff }}\left(\mathbf{q}^{2}\right), \mathbf{C}_{\mathrm{A}}=\mathbf{C}_{\mathbf{1 0}}$

bsl ℓ-operators $\left(\mathrm{O}_{7,9,10}\right)$

K fast: light-cone methods LCSR, QCDF/SCET

Theory outlook

- Form factors: believe to known reasonable well e.9. cross-checks
- Charm: divides into partonic and hadronic methods and ideally we relate them via dispersion relation partonic (below charm threshold)
known only in factorisation-limit:
LD(\mathbf{q}^{2})xFormFactor $\left(\mathbf{q}^{\mathbf{2}}\right)$
Comment: problematic as polarisation-sensitive

Cure: compute or argue polarisation dependence to be small
hadronic (above threshold)

- Fact: no duality in exclusive processes for branching fraction

Since not related to n-point function (duality at level of amplitude). Note: $\operatorname{Br}\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow\right.$ hadrons) is inclusive and a misleading example

- \Rightarrow if we want to enter resonance region have to deal with hadrons
\Rightarrow charmonium-SD interference phases $\delta_{\psi K\left({ }^{*}\right)}$ have to be fitted!
- $B \rightarrow K \mu \mu$ done for broad resonances Lyon, RZ'14

Results:

1) large effects $\delta \psi$ broadk $\simeq \Pi$
2) severe violation of naive factorisation (using e ${ }^{+} e^{-d a t a)}$

- $B \rightarrow K \mu \mu$ redone LHCb'16 \& narrow resonances 4 -fold degeneracy $-\delta_{J / \psi K}= \pm \Pi=\delta_{\psi(2 S) K}= \pm \Pi$
- $B \rightarrow K^{*} \mu \mu$ ongoing LHCb better perspectives as more observables

(b) $R_{K, K^{*}}$ Lepton Flavour Universality II

Theory Crosscheclas

- hadronic effects are universal, ought to cancel
- non-universal - phase space controlled
- QED: O(few\%) - unknown at time
collinear \& soft log
$\sim \alpha \ln ^{2}\left(\frac{m_{e}}{m_{\mu}}\right)$
- QED no factorisation (estimate QED effect from D,F,..-waves) mentioned before Gratrex. Hopfer, RZ'15
- Compute soft \& collinear QED logs (structure independent) in real emission and by Kinoshita, Lee \& Nauenberg thm fixes coefficients of leading virtual logs Bordone, Isidori, Pattori'16

1) Effects up to 15% for electrons (depending $\left.m_{B}-c u t s\right)$
2) These effects are captured by PHOTOS -Monte-Carlo!
3) Estimate structure dependent part to $\mathrm{O}(1 \%)$ for $\mathrm{R}_{k}, \mathrm{R}_{\kappa^{*}}$
some point one has to check by computation
... further comments

- comment on lowest \mathbf{K}^{\star}-bin
- good idea to probe in photon-pole region
- yet maybe too close to muon-threshold

$$
\begin{aligned}
R_{K^{*}}[0.045,1.1]^{\mathrm{SM}} & =0.906 \pm 0.020_{\mathrm{QED}} \pm 0.020_{\mathrm{FF}} \\
R_{K^{*}}[0.1,1.1]^{\mathrm{SM}} & =0.983 \pm 0.010_{\mathrm{QED}} \pm 0.010_{\mathrm{FF}}
\end{aligned}
$$

Bordone, Isidori, Pattori'16

- LFU-ratios of angular observables interesting experimentally as some efficiency uncertainties cancel more tests $\mathrm{R}_{\phi}, \mathrm{R}_{\mathrm{Bs} \rightarrow \ell \ell \gamma}$
- Question: could LHCb test electron/muon detection in $\mathrm{D}_{\mathrm{s}} \rightarrow(\phi \rightarrow \mathrm{ee}) \pi$ (Cabibbo-allowed tree) Pospelov private communication

Experimental Crosschecks

- Available for K^{*}-mode (K not public - awaited in update)
[1]
also compatible with $\Psi(2 S)$
[2]
central-q2

$B_{s} \rightarrow \phi$ vs $B \rightarrow K^{*}$ tension

- at $q^{2}=0$ (i.e. to photon)

$$
\begin{equation*}
R_{K^{*} \phi}^{(\gamma)} \equiv \frac{\operatorname{BR}\left(B^{0} \rightarrow K^{* 0} \gamma\right)}{\operatorname{BR}\left(B_{s} \rightarrow \phi \gamma\right)} \tag{18}
\end{equation*}
$$

- persists in $\mathrm{B} \rightarrow \mathrm{VII}$: q^{2}-spectrum

- puzzling as differ by spectator quark only form factor normalisation from decay constants (experiment)
- sensitive to $\bar{b} s \bar{s} s-$ operators in weak annihilation

Conclusions \& Summary

interesting anomalies 2-4 σ anomalies
 good news: will know more in the foreseeable future

- CKM-corner: IV ${ }_{\text {cbI }}$ disappearing (Belle angular analysis)

IVubl signs of this happening impacts positively on many predictions (e.g. rare decays)!

- Lepton Flavour Universality:

1) $R_{K}, R_{K^{*}}$-anomaly very interesting
(i) photon pole bin puzzling
(ii) Future: more data, crosschecks \& Belle II

- 2) $\mathrm{RD}_{\mathrm{D}}{ }^{(}$: : exp. Bellell, LHCb Run 2 good perspectives exp-th Angular data helps theorists.. th: lattice $B \rightarrow D^{*}$ form factors from several groups
- Angular anomalies b->sII:

1) more q^{2}-bins also in fast recoil
2) need to know residues of charmonium resonances
3) desirable to connect charm partonic to hadronic picture

- Work out observables which isolate WCs with def. q-numbers
- Ce ${ }_{10}$ non-QCD/QED LFU-sensitive coupling?
- E.g. bscc and bsss-operators directly?

$$
\mathcal{A}_{\Delta} \simeq-0.98(50)(20) \quad \mathcal{A}_{\Delta} \simeq 0.047(28)
$$

LHCb '16 theory
$B_{s} \rightarrow \phi \gamma$ time-dependent CP-asymmetry

- Are there observables where the charm can be eliminated?
- My impression: possibilities have not been fully exploited.

Thanks for your Attention!

Backup Slides

non-factorisable QED corrections

photon

- Becomes a proper $1 \rightarrow 3$ process and by crossing a $2 \rightarrow 2$ with Mandelstam variables

$$
\begin{gathered}
B\left(p_{B}\right)+\ell^{-}\left(-\ell_{1}\right) \rightarrow K(p)+\ell^{-}\left(\ell_{2}\right), \\
s[u]=\left(p \pm \ell_{2}\left[\ell_{1}\right]\right)^{2}=\frac{1}{2}\left[\left(m_{B}^{2}+m_{K}^{2}+2 m_{\ell}^{2}-q^{2}\right) \pm \beta_{\ell} \sqrt{\lambda} \cos \theta_{\ell}\right]
\end{gathered}
$$

- $\Rightarrow \mathrm{s}[u]$ enter logs \Rightarrow no restriction $\sin \left(\theta_{1}\right), \cos \left(\theta_{1}\right)$-powers;

Legendre polynomial [or $\left.\Omega_{m}{ }^{1 k, l l}\right]$ serves as a complete basis (non-vanishing higher moments)

$$
\frac{d^{2} \Gamma\left(B \rightarrow K \ell^{+} \ell^{-}\right)}{d q^{2} d \cos \theta_{\ell}}=\sum_{l_{\ell} \geq 0} G^{\left(l_{\ell}\right)} P_{l_{\ell}}\left(\cos \theta_{\ell}\right)
$$

More details QED-corrections

Bordone, Isidori, Pattori'16

$B \rightarrow K \ell^{+} \ell^{-}$	$\ell=e$	$\ell=\mu$
$m_{B}^{\text {rec }}=4.880 \mathrm{GeV}$	-7.6%	-1.8%
$m_{B}^{\text {rec }}=5.175 \mathrm{GeV}$	-16.9%	-4.6%

$B \rightarrow K^{*} \ell^{+} \ell^{-}$	$\ell=e$	$\ell=\mu$
$m_{B}^{\text {rec }}=4.880 \mathrm{GeV}$	-7.3%	-1.7%
$m_{B}^{\text {rec }}=5.175 \mathrm{GeV}$	-16.7%	-4.5%

Table 1 Relative impact of radiative corrections for $q^{2} \in[1,6] \mathrm{GeV}^{2}$, with different cuts on the reconstructed mass and different lepton masses.
$m_{B}{ }^{\text {rec }}=m_{B}$-Detector-Resolution

- Yet instructive to contemplate on right-handed currents $\boldsymbol{\varepsilon}_{\mathbf{R}}$

$$
\mathrm{V}_{\mathrm{cb}}
$$

$$
\begin{aligned}
\left|V_{c b}\right|_{\text {incl }} & =\left|V_{c b}\right|\left(1+\frac{1}{2} \epsilon^{2}\right) \\
\left|V_{c b}\right|_{D^{*}} & =\left|V_{c b}\right|(1+\epsilon) \\
\left|V_{c b}\right|_{D} & =\left|V_{c b}\right|(1-\epsilon)
\end{aligned}
$$

no good as D and D* in wrong direction

- Diagnosing better via angular distribution Bernlocher, Ligeti, Turczek'14
- General dim-6 RHC can explain (old) Vub-pattern but problems with Z->bb Crivellin, Pokorksi'14
- $\quad \Lambda_{b} \rightarrow$ ply from LHCb from '15 does not support right handed currents (not exclude them either)

LHCb-PAPER-2017-017

Short distance described Form Factors

- tensor $\&$ vector form factors

$$
\begin{aligned}
& \left\langle K^{*}(p, \eta)\right| \bar{s} i q_{\nu} \sigma^{\mu \nu}\left(1 \pm \gamma_{5}\right) b\left|\bar{B}\left(p_{B}\right)\right\rangle=P_{1}^{\mu} T_{1}\left(q^{2}\right) \pm P_{2}^{\mu} T_{2}\left(q^{2}\right) \pm P_{3}^{\mu} T_{3}\left(q^{2}\right) \\
& \left\langle K^{*}(p, \eta)\right| \bar{s} \gamma^{\mu}\left(1 \mp \gamma_{5}\right) b\left|\bar{B}\left(p_{B}\right)\right\rangle=P_{1}^{\mu} \mathcal{V}_{1}\left(q^{2}\right) \pm P_{2}^{\mu} \mathcal{V}_{2}\left(q^{2}\right) \pm P_{3}^{\mu} \mathcal{V}_{3}\left(q^{2}\right) \pm P_{P}^{\mu} \mathcal{V}_{P}\left(q^{2}\right)
\end{aligned}
$$

- low \mathbf{q}^{2} (large recoil) Light-cone sum rules

K*-DA: Bharucha, Straub, RZ'15 (use of eoms - backup) B-DA: Offen, Khodjamirian, Mannel '06

- high \mathbf{q}^{2} (low recoil) lattice Horgan, Meinel, Wingate, Liu'13 $\quad A_{0}(0)=A_{3}(0)$
- For Gil et al (

LCSR (K*-DA) \& lattice connect smoothly via z-expansion

long-distance brief overview status

QCDF

1) depends B-meson DA
2) at $1 / m$
endpoint divergences

1/m
accidental?

```
the 1/m
    divergent
```

idem

LCSR

1) depend on spurious momentum and analytic continuation thereof 2) includes photon DA photon DA sizeable Khodjamirian et al'95 Ali Braun'95 Lyon, RZ'13

Dimou, Lyon, RZ'12
not done (some work)
various bits done
Ball, Jones, RZ'06,
Khodjamirian et al'10, ..later

Bosch, Buchalla'01
Beneke, Feldman, Seidel'01

Summary of global fits $\mathbf{b} \rightarrow$ sll

- Assume it's new physics: may perform fit to $H^{\text {eff }}$ Sm (charm later ..) Several fit-groups: Altmanshofer, et al, Descotes et al, Bobeth et al, Hurth et al, Ciuchini et al
- An example-fit: Altmanshofer, et al,
- no stringent signs of
(i) RH-currents
(ii) NP in b->see
(iii) even non-QCD coupling C_{10}
- NP: $\mathrm{C}_{9}=-\mathrm{C}_{10}$ often considered in model building

$5 \sigma>$..yet hadronics

EOM in QFT \Leftrightarrow relations between correlation functions

- the following equation valid on $\left\langle K^{*}\right| . .|B\rangle$:

where D_{i} 's are form factors of derivative operator:
$\left\langle K^{*}(p, \eta)\right| \bar{s}(2 i \overleftarrow{D})^{\mu}\left(1 \pm \gamma_{5}\right) b\left|\bar{B}\left(p_{B}\right)\right\rangle=P_{1}^{\mu} \mathcal{D}_{1}\left(q^{2}\right) \pm P_{2}^{\mu} \mathcal{D}_{2}\left(q^{2}\right) \pm P_{3}^{\mu} \mathcal{D}_{3}\left(q^{2}\right) \pm P_{P}^{\mu} \mathcal{D}_{P}\left(q^{2}\right)$
- Hence if D_{1} is considered form factor then $\quad\left|s_{0}^{T_{1}}-s_{0}^{V}\right|<1 \mathrm{GeV}^{2}$

\downarrow
 checked that twist and α_{s}-expansion is controlled (\Rightarrow more than a numerical accident)

- Vector-tensor form factor ratios determined up to 4-6\%

B. probing non-factorisable effects

- think resonances described Breit-Wigner
N.B. 1) location of pole \& 2) residue are physical!

$$
\left.\mathcal{A}(B \rightarrow K \ell \ell)\right|_{q^{2} \simeq m_{\Psi}^{2}}=\frac{\mathcal{A}(B \rightarrow \Psi K) \mathcal{A}^{*}(\Psi \rightarrow \ell \ell)}{q^{2}-m_{\Psi}^{2}+i m_{\Psi} \Gamma_{\Psi}}+. .
$$

- idea: correct for $\boldsymbol{\Psi}$-production (residue physical)

$$
\begin{aligned}
\left.\mathcal{A}(B \rightarrow \Psi K)\right|_{\text {fac }} & \sim f_{+}^{B \rightarrow K}\left(q^{2}\right) \mathcal{A}(\Psi \rightarrow \ell \ell) \\
& \rightarrow f_{+}^{B \rightarrow K}(q^{2} \underbrace{\eta_{\Psi}}_{1+\text { non-fac }} \mathcal{A}(\Psi \rightarrow \ell \ell) \sim \mathcal{A}(B \rightarrow \Psi K)
\end{aligned}
$$

- fits η_{ψ} : b) global (scaled)fac; c) real-variable; d) complex-variable

Binned $\operatorname{Br}(\mathrm{B} \rightarrow \mathrm{KII})$ high $\mathbf{q}^{\mathbf{2}}$: a priori and a posteriori

- ratio of $\mathrm{Br}(\mathrm{B} \rightarrow \mathrm{KII})$ using
i) factorisation perturbative (no resonances)
ii) factorisation (BES-data)
vs data as function lower bin bdry so
basically as good as data (by construction)

for angular observables issue more subtle as their can be cancellations in ratio

3. Model building

- A lot of activity

Crivellin, d'Ambrosio, Jung, Gauld, Haisch, Cellis, Martin, Hofer, Straub, Gori, Altmanshofer, Hiller, Kamenik, Becirevic, Fajifer, Buras, Neubert, Bauer, Isidori, Buttazzo, Greljo, Guadagnoli, Glashow, Lane, ...

- Severe constraints LFV, LFUV from $1^{\text {st }} \& 2^{\text {nd }}$ generation \Rightarrow single out $3^{\text {rd }}$ generation

Artificial? Yes but no since top is special. E.g. top mass generation in composite Higgs model (partial compositeness)
Georgi,Kaplan 90 ' Pomaorol. Wulzer, ...'00+, Ferretti'14

- People speculating on a light-resonance in connection with $R_{K^{*}}$ deviating from $S M$ in photon pole bin!
- One may distinguish 3 levels

1) flavour effective theory (and RG-running)
2) mediator particles (not UV complete)
3) UV-complete models (e.g. anomaly free, renormalisable) anomalies in

Belle@1709.00129
${\underset{R}{R}}^{R}\left(D^{*}\right)=0.270 \pm 0.035(\mathrm{stat})_{-\cap 010}^{+0.028}(\mathrm{syst})$
$P_{\tau}\left(D^{*}\right)=-0.38 \pm 0.51(\text { stat })_{-0.16}^{+0.21}$ (syst) which is consistent with SM!

