

FSR and issues with jet multiplicity

Photo from JetMET100 workshop in Helsinki, <u>www.hip.fi/jetmet100</u>

FSR and the universe

- Vacuum stability defined by α_{s,m_t}
- α_s, m_t defined by FSR
- Thus, fate of the universe defined by FSR

FSR and the universe

- Vacuum stability defined by α_{s,m_t}
- α_s, m_t defined by FSR
- Thus, fate of the universe defined by FSR
- With that out of the way, lets get to saving the universe $\operatorname{Pol}_{t}^{\operatorname{pol}_{t}}$

FSR in y+jet (CMS)

- Results from CMS 7 TeV JEC paper
 JINST 6 (2011) 11002 / arXiv:1107.4277
 - γ+jet MC is Pythia6 (LO + PS)
- Poor modeling of FSR, O(5%) bias
- MPF mostly immune, expectation of bias is <20% of p_T balance
- Inclusive α (=pT²/pT^Y) binning used
- Take home: Pythia6 way off for FSR

FSR y+jet (D0)

- Results extracted from D0 JEC paper
 - ▶ Ref. JINST / arXiv
 - γ+jet MC is Pythia6 (LO + PS)
 - dijet (EM+jet) is Pythia6 (LO + PS)
- About 9–13% difference between MPF (stable), and p_T balance (biased)
- Similar Data / MC for γ+jet and EM+jet (dijet with leading π⁰->γγ)
- Take home: Pythia6 way off for FSR

FSR in Z+jet

- Results from CMS 8 TeV JEC paper
 JINST 12 (2017) P02014 / arXiv:1607.03663
 - Z+jet MC is MadGraph (LO multileg + PS)
- Decent modeling of FSR, O(1%) bias
- MPF mostly immune
- Exclusive α binning used for this plot, but final results with inclusive α binning
- Take home: MadGraph decent, 2% bias

Z+jet vs y+jet

Top! Hammertime: FSR issues, Nov 14, 2017

Mikko Voutilainen, UH and HIP

- Global fit including FSR (dR/d α_{max}) shows MPF stable to <1%, pT balance biased 3—7%
- Impact on α_{max}<0.3 is ~1.5% (0.9—2.1%)

Comparing generators

- Standalone Z/γ+jet samples may be useful for testing MC generators for FSR modeling
 - ▷ Z(-> $\mu\mu$, ee) and γ at are good approximations of parton p_T
 - ▶ Particle jet $p_{T,gen}$ approaches parton $p_{T,parton}$ at α ->0
- Possible to repeat study on data vs MC with detector simulation

FSR in Z + b-jet

- p_T balance with α <0.3 consistent with MPF and α ->0 results at O(0.5%) level
- Suggests that b-jet FSR modelling not significantly different from light jets

FSR in tt+jet

- Hypothesis: there is an implicit α_{max} in kinematic m_t measurements
 - ▷ Guesstimate for M_W: window 60—110 GeV limits α_{max} <1-60/80.4=0.25
 - Guesstimate for m_t: m_t^{fit}(tt correct)~120—220 GeV limits α_{max}<1-120/172.5=0.30</p>
- Maximum α_{max} =0.3 similar to JEC (peak of dN/d α), effective α_{max} maybe half that

PRD 93 (2016) 072004 / arXiv:1509.04044

FSR and m_t

- So far: (1) α_{max} for M_{W}^{reco} and m_t^{fit} similar, and (2) b-jet and light-jet FSR similar
- Therefore, expect M_W=80.4 GeV constraint to absorb most of FSR bias
 - ▷ JSF is not only a measure of Δ JEC (certain to 0.32%), but of Δ FSR (expect bias of up to ~1%)
 - ▶ JSF-1 sign at 8 TeV is just opposite to that seen in JEC studies with MadGraph...

PRD 93 (2016) 072004 / arXiv:1509.04044

Powheg+Pythia8

- Run 2 default simulator is Powheg+Pythia8 (TOP-17-002, TOP-17-007)
- PH+P8 good for tt+jet modeling (TOP-16-021); yet to be tested for JEC at CMS
- Good for AK4+AK7 inclusive jets (EPJC 76 (2016) 451); AK4/AK7 ratio sensitive to FSR
- Just missing quantitative uncertainty from comparisons to data

ATLAS

- N_{jet} and gap fraction from ATLAS (EPJ C77 (2017) 220)
- Sensitive to ISR and FSR, so no way to tell apart

Summary

- Used to have chronic mismodeling of light-jet FSR in simulation
 - Pythia6/MadGraph > data > Pythia8 > Herwig++
 - ▷ Tools of the trade: $\alpha = p_{T,2}/p_{T,Y}$ and p_T^{bal}/MPF
- NLO+PS (Powheg+Pythia8) now much better, although lack quantitative number
 - ▷ Could use standalone Z/ γ +jet for estimate? Also need effective α_{max} in ttbar
- b-jet FSR consistent with light jets
 - Evidence so far supports consistency at O(0.5%) level

What happens in a jet, stays in jet — rule of JEC