Top! Hammertime

CMS Workshop @ CERN

TTY TTZ QT EFT

Markus Schulze
Humboldt-Universität zu Berlin

Introduction

• The LHC is opening the door to a whole new process class

$$t\bar{t} + \gamma$$
, $t\bar{t} + Z$, $t\bar{t} + W^{\pm}$, $t\bar{t} + H$

that was *never* observed at the Tevatron.

13 TeV	now	300 fb ⁻¹
$t ar{t}$	33 Mio.	250 Mio.
$t\bar{t} + \gamma$	100.000	900.000
$t\bar{t} + Z$	40.000	300.000
$t\bar{t} + H$	20.000	180.000

• ttbar + X is largely unexplored in the context of anomalous coupling studies. With ~ 100 fb⁻¹ it gets really exciting!

Top quark anatomy

- NWA: Precise and systematic separation into production and decay dynamics.
- There are (at least) 28 anomalous operators affecting production & decay dynamics (often affecting production and decay simultaneously!)

Top quark anatomy

- NWA: Precise and systematic separation into production and decay dynamics.
- There are (at least) 28 anomalous operators affecting production & decay dynamics (often affecting production and decay simultaneously!)
- A global 28-dimensional approach is impossible
 - → There are ways to simplify the analysis (see TOP2017)
 In short: First, study *ttbar* to constrain QCD production and weak decay, then study additional pieces in *ttbar+V*.

$t\bar{t}$ + photon

- ullet Directly sensitive to top quark electric charge Q_t
- gg dominated (LHC: 80%), small ISR contamination $\sim Q_{u_i}Q_d$
- Feature: radiative top quark decay

$$d\sigma = d\sigma_{t\bar{t}\gamma} d\mathcal{B}_t d\mathcal{B}_{\bar{t}} + d\sigma_{t\bar{t}} \left(d\mathcal{B}_{t\gamma} d\mathcal{B}_{\bar{t}} + d\mathcal{B}_t d\mathcal{B}_{\bar{t}\gamma} \right)$$

• Has a charge asymmetry already at LO

$t\bar{t}$ + photon

- ullet Directly sensitive to top quark electric charge Q_t
- gg dominated (LHC: 80%), small ISR contamination $\sim Q_{u_i}Q_d$
- Feature: radiative top quark decay

$$d\sigma = d\sigma_{t\bar{t}\gamma} d\mathcal{B}_t d\mathcal{B}_{\bar{t}} + d\sigma_{t\bar{t}} \left(d\mathcal{B}_{t\gamma} d\mathcal{B}_{\bar{t}} + d\mathcal{B}_t d\mathcal{B}_{\bar{t}\gamma} \right)$$

• Has a charge asymmetry already at LO

Interaction
$$\mathcal{L}_{\gamma tt} = -eQ_t \bar{t} \gamma^{\mu} t A_{\mu} - e\bar{t} \frac{i\sigma^{\mu\nu}q_{\nu}}{m_t} (d_V^{\gamma} + id_A^{\gamma}\gamma_5) t A_{\mu}$$
.

tt + photon

- ullet Directly sensitive to top quark electric charge Q_t
- gg dominated (LHC: 80%), small ISR contamination $\sim Q_{u_i}Q_d$
- Feature: radiative top quark decay

$$d\sigma = d\sigma_{t\bar{t}\gamma} d\mathcal{B}_t d\mathcal{B}_{\bar{t}} + d\sigma_{t\bar{t}} \left(d\mathcal{B}_{t\gamma} d\mathcal{B}_{\bar{t}} + d\mathcal{B}_t d\mathcal{B}_{\bar{t}\gamma} \right)$$

• Has a charge asymmetry already at LO

Interaction
$$\mathcal{L}_{\gamma tt} = -eQ_t \bar{t} \gamma^{\mu} t A_{\mu} - e\bar{t} \frac{i\sigma^{\mu\nu} q_{\nu}}{m_t} \left(d_V^{\gamma} + i d_A^{\gamma} \gamma_5 \right) t A_{\mu}$$

Magnetic dipole mom.

Electric dipole mom. (CP-violating)

[Martinez,Perez,Poveda] [Hollik,Jose,Rigolin,Schappacher,Stöckinger] [Shabalin,Khriplovich,Czarnecki,Krause]

$pp \rightarrow t\bar{t} + \gamma$ at NLO QCD

[Melnikov, Scharf, MS] Phys.Rev. D83 (2011) 074013

$t\bar{t}$ + photon

Full NLO QCD: NLO prod.+ NLO decay with all spin correlations

[Melnikov, Scharf, MS] Phys.Rev. D83 (2011) 074013

$$p_{\perp,\gamma} > 20 \text{ GeV}, \quad |y_{\gamma}| < 2.5, \quad R_{\gamma,b} > 0.4, \quad R_{\gamma,j} > 0.4, \quad R_{\gamma,\ell} > 0.4,$$
 $p_{\perp,b} > 20 \text{ GeV}, \quad p_{\perp,j} > 20 \text{ GeV}, \quad p_{\perp,\ell} > 20 \text{ GeV}, \quad E_{\perp,\text{miss}} > 20 \text{ GeV},$ $|y_b| < 2.0, \quad |y_j| < 2.5, \quad |y_{\ell}| < 2.5. \quad \text{Smooth-cone photon isolation}$

$$\sigma_{\text{LO}} = 74.50^{+23.98}_{-16.89} \text{ fb}, \quad \sigma_{\text{NLO}} = 138^{+30}_{-23} \text{ fb}.$$

More than 500 events with $p_{\text{T}\gamma} > 100 \text{ GeV from } 100 \text{ fb}^{-1}$

$t\bar{t}$ + photon

Full NLO QCD: NLO prod.+ NLO decay with all spin correlations

[Melnikov, Scharf, MS] Phys.Rev. D83 (2011) 074013

$$p_{\perp,\gamma} > 20 \text{ GeV}, \quad |y_{\gamma}| < 2.5, \quad R_{\gamma,b} > 0.4, \quad R_{\gamma,j} > 0.4, \quad R_{\gamma,\ell} > 0.4,$$
 $p_{\perp,b} > 20 \text{ GeV}, \quad p_{\perp,j} > 20 \text{ GeV}, \quad p_{\perp,\ell} > 20 \text{ GeV}, \quad E_{\perp,\text{miss}} > 20 \text{ GeV},$ $|y_b| < 2.0, \quad |y_j| < 2.5, \quad |y_{\ell}| < 2.5. \quad \text{Smooth-cone photon isolation}$

$$\sigma_{\text{LO}} = 74.50^{+23.98}_{-16.89} \text{ fb}, \quad \sigma_{\text{NLO}} = 138^{+30}_{-23} \text{ fb}.$$

$$\sigma_{\text{prod}}^{\text{NLO}} = 61 \,\text{fb}$$

$$\sigma_{
m decay}^{
m NLO} = 77\,{
m fb}$$

 \rightarrow Photons with p_{Tv} <50 GeV are dominantly emitted in the decay

 \rightarrow Compare SM vs. "Exotic" (Q_t =-4/3) hypothesis

 \rightarrow Compare SM vs. "Exotic" (Q_t =-4/3) hypothesis

• Naive expectation of Q_t^2 scaling (i.e. factor 4) fails:

$$\mathcal{R}^{\text{NLO}} = \frac{\sigma_{\text{NLO}}^{Q_t = -4/3}}{\sigma_{\text{NLO}}^{Q_t = 2/3}} = 1.76_{-0.02}^{+0.01}.$$

Why? Radiative decay and interference effects!

• Apply additional cuts to suppress radiative decays

$$\begin{split} m_{\rm T}(b\ell\gamma; E_{\rm T}^{\rm miss}) &> 180~{\rm GeV}, \qquad m_{\rm T}(\ell\gamma; E_{\rm T}^{\rm miss}) > 90~{\rm GeV}, \\ 160~{\rm GeV} &< m(bjj) < 180~{\rm GeV}, ~70~{\rm GeV} < m(j,j) < 90~{\rm GeV} \end{split}$$

BEFORE:

Radiative decay dominates

AFTER:

Radiative decay strongly suppressed, but still relevant

• Apply additional cuts to suppress radiative decays

$$m_{
m T}(b\ell\gamma; E_{
m T}^{
m miss}) > 180 {
m ~GeV}, \qquad m_{
m T}(\ell\gamma; E_{
m T}^{
m miss}) > 90 {
m ~GeV}, \ 160 {
m ~GeV} < m(bjj) < 180 {
m ~GeV}, \ 70 {
m ~GeV} < m(j,j) < 90 {
m ~GeV}$$

→ Significantly stronger separation power:

$$\mathcal{R}_{\text{RDS}}^{\text{NLO}} = \frac{\sigma_{\text{NLO}}^{Q_t = -4/3}}{\sigma_{\text{NLO}}^{Q_t = 2/3}} = 2.88_{-0.12}^{+0.05}$$

But total cross section is reduced by x5.

- Compare two approaches:
 - 1) No cuts: Large cross section, less separation power
 - 2) Cuts: Small cross section, strong separation power
 - → What is the luminosity required for 3-sigma separation between the two hypotheses?

$$\frac{\mathcal{L}}{\mathcal{L}_{RDS}} = \frac{\sigma_{RDS}^{Q_t = 2/3}}{\sigma^{Q_t = 2/3}} \frac{(\mathcal{R}_{RDS} - 1)^2}{(\mathcal{R} - 1)^2} \qquad \qquad \frac{\mathcal{L}}{\mathcal{L}_{RDS}} = \begin{cases} 1.98 \pm 0.02, & LO; \\ 1.12 \pm 0.08, & NLO. \end{cases}$$

While it seems beneficial to apply the cuts at LO.
 The gain is much smaller at NLO QCD.

Sensitivity to Q_t from cross section ratios

• Instead of applying additional cuts: Normalize to ttbar cross section Cancels systematics (e.g. α_s , pdfs, luminosity..)

$$\frac{\sigma_{t\bar{t}\gamma}^{Q_t=2/3}}{\sigma_{t\bar{t}}} = \begin{cases}
5.66_{-0.02}^{+0.03} \times 10^{-3}, & \text{LO}; \\
6.33_{-0.14}^{+0.26} \times 10^{-3}, & \text{NLO},
\end{cases} \frac{\sigma_{t\bar{t}\gamma}^{Q_t=-4/3}}{\sigma_{t\bar{t}}} = \begin{cases}
10.4_{-0.2}^{+0.2} \times 10^{-3}, & \text{LO}; \\
11.2_{-0.2}^{+0.3} \times 10^{-3}, & \text{NLO}.
\end{cases}$$

Some differential ratio distributions show good shape sensitivity

$pp \rightarrow t\bar{t} + Z$ at NLO QCD

[R. Röntsch, MS] JHEP 1407 (2014) 091;

$t\bar{t} + Z$

Full NLO QCD: NLO prod.+ NLO decay with all spin correlations Feature: No radiative decays.

SM couplings C_1 are not protected by gauge symmetries Weak magn./electr. dipole moments C_2

$$\mathcal{L}_{t\bar{t}Z} = ie\bar{u}(p_t) \left[\gamma^{\mu} \left(C_{1,V} + \gamma_5 C_{1,A} \right) + \frac{i\sigma_{\mu\nu} q_{\nu}}{M_Z} \left(C_{2,V} + i\gamma_5 C_{2,A} \right) \right] v(p_{\bar{t}}) Z_{\mu},$$

Constraints from LHC run-II

Constraints from LHC run-II

Weak dipole moments

EFT in action

• Demanding SU(2)xU(1) symmetry of BSM physics leads to relations amongst EFT coeffs.

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \bar{b} \, \gamma^{\mu} (V_L P_L - V_R P_R) \, t \, W_{\mu}^- - \frac{g}{\sqrt{2}} \bar{b} \, \frac{i \sigma^{\mu\nu} q_{\nu}}{M_W} (g_L P_L - g_R P_R) \, t \, W_{\mu}^- + \text{H.c.} \, .$$

$$\mathcal{L}_{Ztt} = -\frac{g}{2c_W} \bar{t} \, \gamma^{\mu} \left(X_{tt}^L P_L + X_{tt}^R P_R - 2s_W^2 Q_t \right) t \, Z_{\mu} - \frac{g}{2c_W} \bar{t} \, \frac{i\sigma^{\mu\nu} q}{M_Z} \left(\left(d_V^Z + id_A^Z \gamma_5 \right) t \, Z_{\mu} \, , \right)$$

$$\mathcal{L}_{\gamma tt} = -eQ_t \bar{t} \, \gamma^{\mu} t \, A_{\mu} - e\bar{t} \, \frac{i\sigma^{\mu\nu} q}{m_t} \left((d_V^{\gamma} + id_A^{\gamma} \gamma_5) \right) A_{\mu} \, .$$

EFT in action

• Demanding SU(2)xU(1) symmetry of BSM physics leads to relations amongst EFT coeffs.

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_L P_L) V_R P_R t W_{\mu}^- - \frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu\nu} q_{\nu}}{M_W} (g_L P_L) g_R P_R t W_{\mu}^- + \text{H.c.}.$$

$$\mathcal{L}_{Ztt} = -\frac{g}{2c_W} \bar{t} \gamma^{\mu} (X_{tt}^L P_L) + X_{tt}^R P_R - 2s_W^2 Q_t t T Z_{\mu} - \frac{g}{2c_W} \bar{t} \frac{i \sigma^{\mu\nu} q_{\nu}}{M_Z} (d_V^Z + i d_A^Z \gamma_5) t Z_{\mu},$$

$$\mathcal{L}_{\gamma tt} = -eQ_t \bar{t} \gamma^{\mu} t A_{\mu} - e\bar{t} \frac{i\sigma^{\mu\nu} q}{m_t} \left((d_V^{\gamma} + id_A^{\gamma} \gamma_5) \right) A_{\mu}.$$

- As a result, $top\ decay$, ttbar+Z, $ttbar+\gamma$, single-top are related
- A consistent EFT treatment of -for example- the left-handed ttZ coupling requires modification of top decay and top quark width.

Top dipole moments

Simultaneous study of $t\bar{t}$, $t\bar{t}+\gamma$ and $t\bar{t}+Z$ including all EFT relations in the $b\,\ell\,\nu\,\bar{b}\,j\,j\,\,(+\,\ell^+\ell^-/\gamma)$ final state.

[Y. Soreq, M.S.] Eur. Phys. J. C76 (2016), 466

$$\mathcal{O}_{uW}^{33} = (\bar{q}_{L}\sigma^{\mu\nu}\tau^{I}t_{R})\tilde{H}W_{\mu\nu}^{I},$$

$$\mathcal{O}_{dW}^{33} = (\bar{q}_{L}\sigma^{\mu\nu}\tau^{I}b_{R})HW_{\mu\nu}^{I},$$

$$\mathcal{O}_{uB\phi}^{33} = (\bar{q}_{L}\sigma^{\mu\nu}t_{R})\tilde{H}B_{\mu\nu},$$

		b	b vinny	
	C_{uW}^{33}	\otimes	\otimes	\otimes
(C_{uW}^{33} C_{dW}^{33} $C_{uB\phi}^{33}$	\otimes	\otimes	
($uB\phi$			\otimes

$$\begin{split} g_{\mathrm{L}}^{W^-} &= g_{\mathrm{R}}^{W^+*} = -\frac{e\,m_t}{s_{\mathrm{W}}M_W}\frac{v^2}{\Lambda^2}\,C_{dW}^{33*}, \\ g_{\mathrm{R}}^{W^-} &= g_{\mathrm{L}}^{W^+*} = -\frac{e\,m_t}{s_{\mathrm{W}}M_W}\frac{v^2}{\Lambda^2}\,C_{uW}^{33}, \\ g_{\mathrm{L}}^{\gamma} &= g_{\mathrm{R}}^{\gamma*} = -\frac{\sqrt{2}\,m_t\,v}{\Lambda^2}\left(c_{\mathrm{W}}C_{uB\phi}^{33*} + s_{\mathrm{W}}C_{uW}^{33*}\right), \\ g_{\mathrm{L}}^{Z} &= g_{\mathrm{R}}^{Z*} = -\frac{e\,m_t\,v^2}{\sqrt{2}s_{\mathrm{W}}c_{\mathrm{W}}M_Z\Lambda^2}\left(c_{\mathrm{W}}C_{uW}^{33*} - s_{\mathrm{W}}C_{uB\phi}^{33*}\right), \end{split}$$

Top dipole moments

Simultaneous study of $t\bar{t}$, $t\bar{t}+\gamma$ and $t\bar{t}+Z$ including all EFT relations in the $b\,\ell\,\nu\,\bar{b}\,j\,j\,\,(+\,\ell^+\ell^-/\gamma)$ final state.

[Y. Soreq, M.S.] Eur. Phys. J. C76 (2016), 466

$$\mathcal{O}_{uW}^{33} = (\bar{q}_{L}\sigma^{\mu\nu}\tau^{I}t_{R})\tilde{H}W_{\mu\nu}^{I},$$

$$\mathcal{O}_{dW}^{33} = (\bar{q}_{L}\sigma^{\mu\nu}\tau^{I}b_{R})HW_{\mu\nu}^{I},$$

$$\mathcal{O}_{uB\phi}^{33} = (\bar{q}_{L}\sigma^{\mu\nu}t_{R})\tilde{H}B_{\mu\nu},$$

	b	b Now W	
C_{uW}^{33}	\otimes	\otimes	\otimes
C_{uW}^{33} C_{dW}^{33} $C_{uB\phi}^{33}$	\otimes	\otimes	
$C_{uB\phi}^{33}$			\otimes

$$\begin{split} g_{\mathrm{L}}^{W^-} &= g_{\mathrm{R}}^{W^+*} = -\frac{e\,m_t}{s_{\mathrm{W}}M_W}\frac{v^2}{\Lambda^2}\,C_{dW}^{33*}, \\ g_{\mathrm{R}}^{W^-} &= g_{\mathrm{L}}^{W^+*} = -\frac{e\,m_t}{s_{\mathrm{W}}M_W}\frac{v^2}{\Lambda^2}\,C_{uW}^{33}, \\ g_{\mathrm{L}}^{\gamma} &= g_{\mathrm{R}}^{\gamma*} = -\frac{\sqrt{2}\,m_t\,v}{\Lambda^2}\left(c_{\mathrm{W}}C_{uB\phi}^{33*} + s_{\mathrm{W}}C_{uW}^{33*}\right), \\ g_{\mathrm{L}}^{Z} &= g_{\mathrm{R}}^{Z*} = -\frac{e\,m_t\,v^2}{\sqrt{2}s_{\mathrm{W}}c_{\mathrm{W}}M_Z\Lambda^2}\left(c_{\mathrm{W}}C_{uW}^{33*} - s_{\mathrm{W}}C_{uB\phi}^{33*}\right), \end{split}$$

→ Construct **ratios of cross sections** to cancel uncertainties and enhance sensitivity:

$$\mathcal{R}_{\gamma} = rac{\sigma_{tar{t}\gamma}}{\sigma_{tar{t}}}, \quad \mathcal{R}_{Z} = rac{\sigma_{tar{t}Z}}{\sigma_{tar{t}}}$$

$$\mathcal{R}_{\gamma}^{\text{SM}} \times 10^{-3} = \begin{cases} 11.4_{+0.7\%}^{-0.7\%} & \text{at LO,} \\ 12.6_{-1.8\%}^{+3.1\%} & \text{at NLO QCD,} \end{cases}$$

First measurement by CMS:

$$\mathcal{R}_{\gamma}(8 \text{ TeV}) = 10.7 \times 10^{-3} \pm 6.5\% (\text{stat.}) \pm 25\% (\text{syst.})$$

Top dipole moments

2

 C_{uW}^{33} (Λ /TeV)²

-2

$$C_{uW}^{33} = [-1.2, +1.4] (\Lambda/\text{TeV})^2$$

 $C_{uB\phi}^{33} = [-1.9, +1.2] (\Lambda/\text{TeV})^2$

