NLL predictions for jet gap jet cross sections at TeVatron and LHC

Florent Chevallier, O. Kepka, C. Marquet, C. Royon

Introduction

- BFKL evolution
- Process of interest

Phenomenology of jet-gap-jet events

- Theoretical production cross-section
- Going to NLL-BFKL
- Implementation in Herwig Monte Carlo

Jet-gap-jet cross-sections at hadron colliders

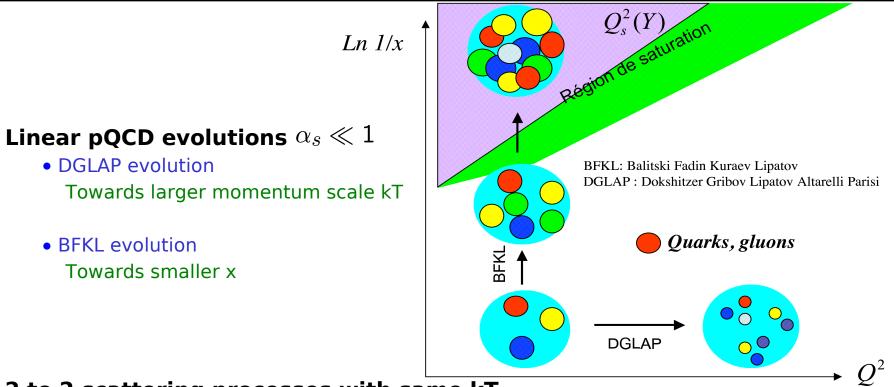
- Corrections to LL-BFKL
- Comparison with DØ and CDF measurements
- Predictions for LHC

Conclusion

Introduction

- BFKL evolution
- Process of interest

Phenomenology of jet-gap-jet events


- Theoretical production cross-section
- Going to NLL-BFKL
- Implementation in Herwig Monte Carlo

Jet-gap-jet cross-sections at hadron colliders

- Corrections to LL-BFKL
- Comparison with DØ and CDF measurements
- Predictions for LHC

Conclusion

Introduction : BFKL evolution

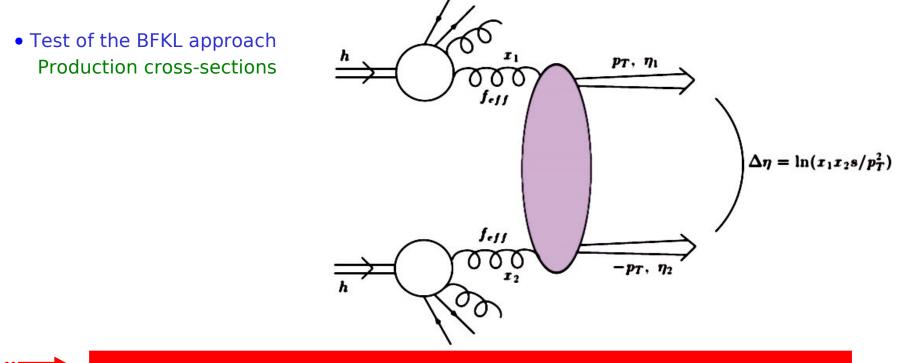
2 to 2 scattering processes with same kT

DGLAP evolution

No additional radiation is possible since jets have same kT

• BFKL evolution with Regge limit

Large rapidity interval between final-state particles Resummation of the large higher-order leading logs

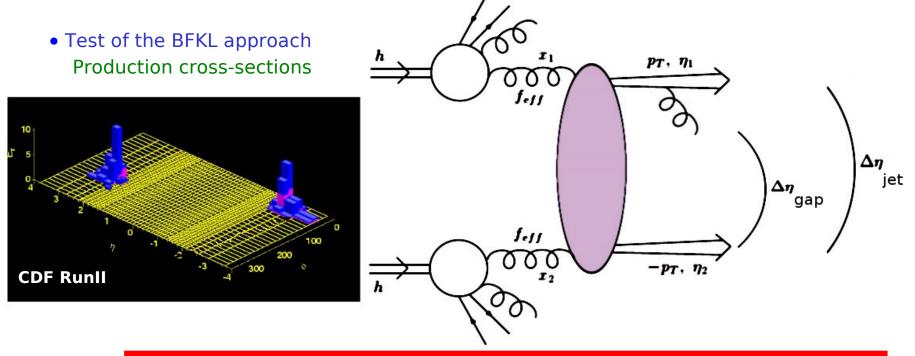


Signs of BFKL evolution in di-jets processes with same p_{T} and large Aŋ gap.

Process of interest

Gaps between jets

No energy deposits between jets
 Observed at TeVatron and HERA
 Measurement sensitive to the structure and size of the jets



1) Compute $d^2\sigma / dp_{\tau} dA\eta$ for large $\Delta\eta$, same pT for both jets

Process of interest

Gaps between jets

No energy deposits between jets
 Observed at TeVatron and HERA
 Measurement sensitive to the structure and size of the jets

1) Compute d²σ / dp_τ dAη for large Δη, same pT for both jets
 2) Implementation of BFKL NLL formalism in event generator (HERWIG)

Introduction

- BFKL evolution
- Process of interest

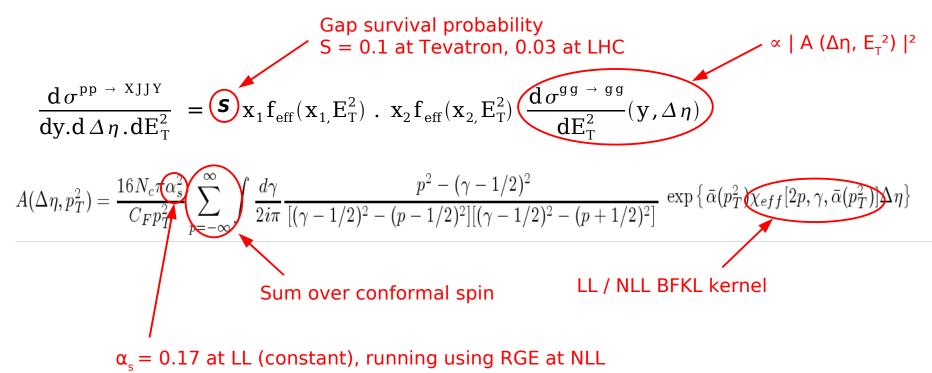
Phenomenology of jet-gap-jet events

- Theoretical production cross-section
- Going to NLL-BFKL
- Implementation in Herwig Monte Carlo

Jet-gap-jet cross-sections at hadron colliders

- Corrections to LL-BFKL
- Comparison with DØ and CDF measurements
- Predictions for LHC

Conclusion


BFKL formalism for jet-gap-jet production

Cross-section in the BFKL framework

• Relevant variables

$$y = \frac{y_1 + y_2}{2}$$
; $\Delta \eta = |y_1 - y_2|$

Jet-gap-jet cross-section

 \Rightarrow 1 free parameter : the normalization

Going to NLL-BFKL

Going to NLL-BFKL

- Large corrections w.r.t. LL and lead to unphysical results NLL BFKL kernels need resummation Truncation of the perturbative series → spurious singularities in BFKL-NLL kernel
- Use of Salam's regularisation schemes

Singularities cancel when add some higher order corrections \rightarrow meaningful NLL-BFKL results

S3 and S4 schemes for forward jet production (modulo the impact factors taken at LL)

Full NLL-BFKL kernel available

• Resolution of implicit equation performed by numerical methods

$$\chi_{NLL} \xrightarrow{\text{regularization}} \chi_{S4} \xrightarrow{\text{implicit equation}} \chi_{eff}$$

$$\chi_{eff} = \chi^{NLL-S4}(\gamma, \alpha, \chi_{eff})$$

Implementation in Herwig Monte Carlo

Parametrization of the hard cross-section

• Fit to BFKL NLL cross section

....

2200 points fitted between $10 < E_T < 120$ GeV, $0.1 < \Delta \eta < 10$

Fit $\chi 2 \sim 0.1$ (better than 1% difference per point)

$$\frac{\mathrm{d}\,\sigma^{\mathrm{gg}\,\rightarrow\,\mathrm{gg}}}{\mathrm{d}E_{\mathrm{T}}^{2}} = \mathrm{f}(\mathrm{E}_{\mathrm{T}},\Delta\eta) \,.\,\left(\hat{\mathrm{s}}/\mathrm{E}_{\mathrm{T}}^{2}\right)^{2}\,/\,(4\,\pi\,\alpha_{\mathrm{s}}^{4})$$

Example for BFKL NLL, with all p $f(E_T, \Delta \eta) = A + F * E_T + L * \sqrt{E_T}$

$$+ (B + G * E_{T} + M * \sqrt{E_{T}}) \left(\frac{3\pi\alpha_{s}\Delta\eta}{2}\right)$$
$$+ (C + H * E_{T}) \left(\frac{3\pi\alpha_{s}\Delta\eta}{2}\right)^{2}$$
$$+ (I + N * \sqrt{E_{T}}) \left(\frac{3\pi\alpha_{s}\Delta\eta}{2}\right)^{3}$$
$$+ e^{D + \frac{3E\pi\alpha_{s}\Delta\eta}{2}}$$

Integration over $\Delta \eta$, E_{T} performed in Herwig event generation

Meaningful predictions which takes into account jet structure and size

Content

Introduction

- BFKL evolution
- Process of interest

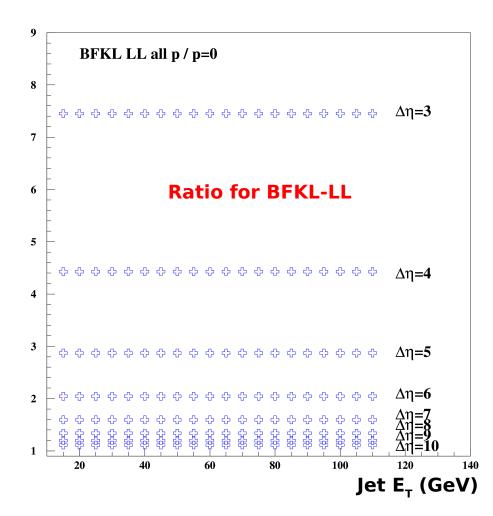
Phenomenology of jet-gap-jet events

- Theoretical production cross-section
- Going to NLL-BFKL
- Implementation in Herwig Monte Carlo

Jet-gap-jet cross-sections at hadron colliders

- Corrections to LL-BFKL
- Comparison with DØ and CDF measurements
- Predictions for LHC

Conclusion

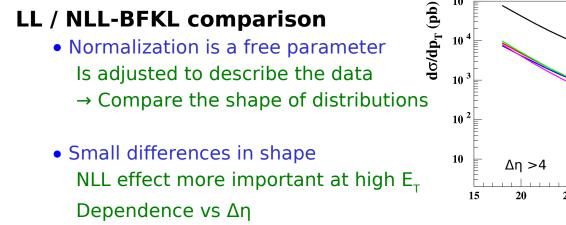

Resummation over conformal spins at LL

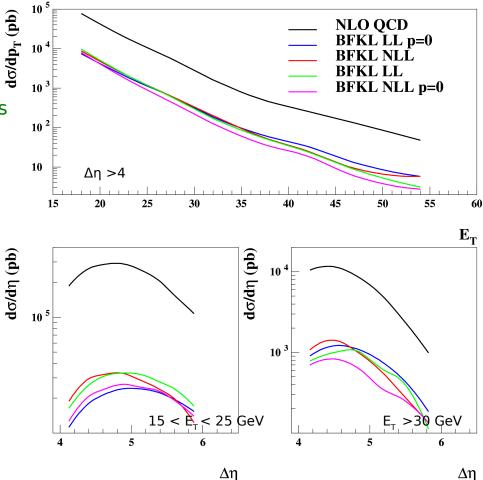
Contributions from non-zero conformal spins

- Not perfomed before
- Study of the ratio

 $\frac{d\sigma/dE_{\rm T}(all\,p)}{d\sigma/dE_{\rm T}(p=0)}$

Large contribution
 x 4.5 for Δη=4
 x 1.5 for Δη=8
 Larger contribution at low Δη


Resummation over conformal spins at NLL


Contributions from non-zero conformal spins

- Not perfomed before
- Study of the ratio

 $d\sigma/dE_{T}(all p)$ BFKL NLL all p / p=0 12 $\Delta \eta = 3$ $d\sigma/dE_{T}(p=0)$ Large contribution 10 for $\Delta \eta = 4$ x 4 – 8 ÷ x 1.5 – 2 for $\Delta \eta = 8$ **Ratio for BFKL-NLL** ÷ 8 Larger contribution at high E_{τ} and low $\Delta \eta$ æ $\Delta \eta = 4$ ÷ 6 _{የ የ የ} የ የ የ æ ∆η**=5** ዯ **Δη=6** 4 $\Delta \eta = 7$ **∆η=8 Δη=9** 2 ∆ŋ**=10** 20 40 60 80 100 120 140 Jet E_{τ} (GeV) p≠0 contributions are needed both at LL and NLL

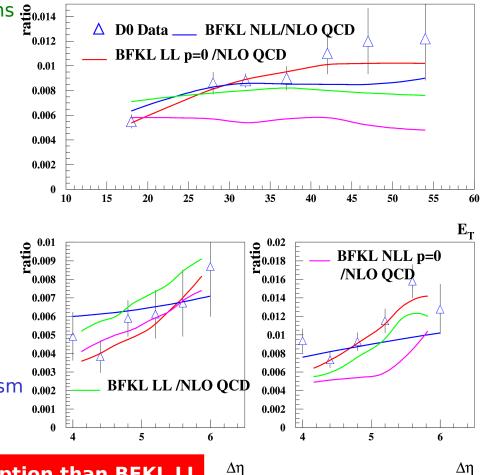
Effect of higher-order BFKL corrections

Comparisons with DØ data

DØ measurements

- Fraction of di-jets events with gap Ratio of jet gap jet / Inclusive di-jet cross sections
- Data selection

Central gap between jets $\Delta \eta > 2$ with no significant energy


2 high ET jets in opposite forward regions $\underline{e}_{0.014}$

Predictions

Ratio =
$$\left| \frac{\sigma^{\text{NLL}}(\text{jet-gap-jet})}{\sigma^{\text{L0}}(\text{di-jet})} \right|_{\text{Herwig}}$$

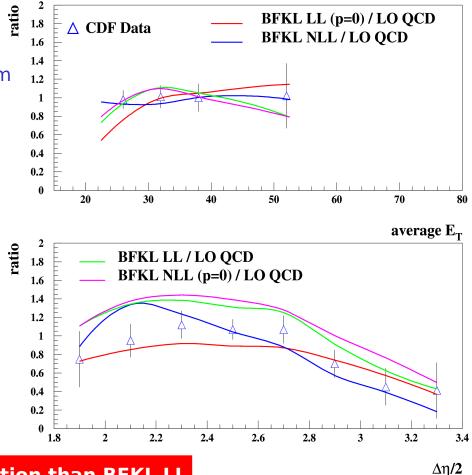
* $\left| \frac{\sigma^{\text{NL0}}(\text{di-jet})}{\sigma^{\text{L0}}(\text{di-jet})} \right|_{\text{NLOJet++}}$

Comparisons with BFKL formalism

- Good agreement with LL p=0 BFKL but p≠0 contributions are important
- Better description with BFKL NLL formalism

BFKL NLL leads to a better description than BFKL LL

CDF measurements

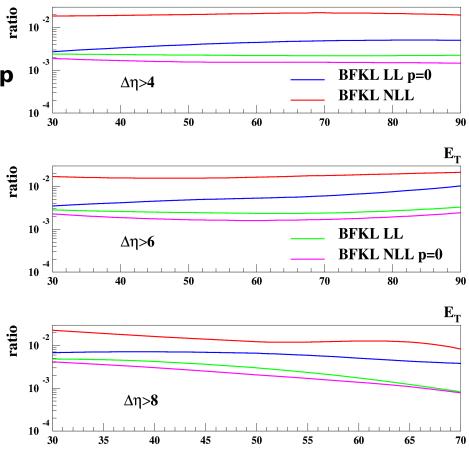

• Same as for DØ analysis

Predictions

• Same as for DØ analysis

Comparisons with BFKL formalism

• Better description with BFKL NLL formalism


Predictions for LHC

Predictions

- Use the same BFKL NLL formalism in Herwig at LHC energies
- Gap survival probability for LHC
- Rapidity gap $-1 < \Delta \eta < 1$

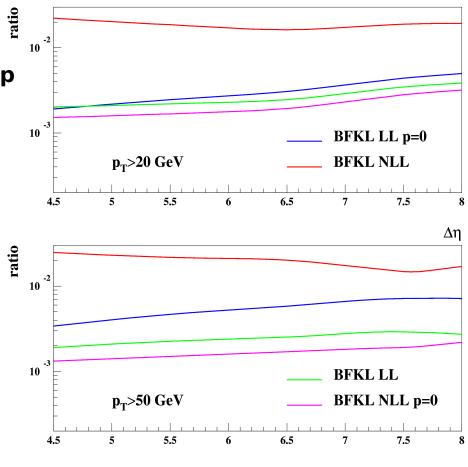
Fraction of di-jets events with gap

- Versus jet E_{T}
- Versus jet Δη

E_T

Weak E₊ dependence

Large differences in normalisation between BFKL LL and NLL predictions 17


Predictions for LHC

Predictions

- Use the same BFKL NLL formalism in Herwig at LHC energies
- Gap survival probability for LHC
- Rapidity gap $-1 < \Delta \eta < 1$

Fraction of di-jets events with gap

- Versus jet E_{T}
- Versus jet Δη

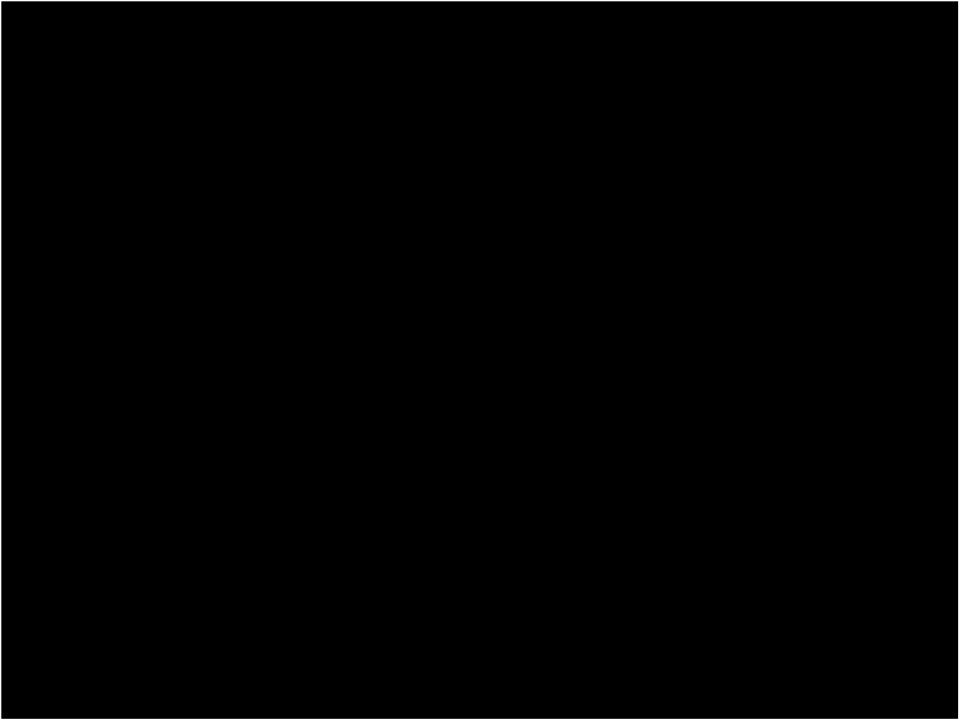
η

Weak **∆**η dependence

Large differences in normalisation between BFKL LL and NLL predictions

Conclusion

First study of processes with the BFKL kernel at next-leading accuracy


Predictions obtained with the full analytic expression of the NLL-BFKL kernel Non-zero conformal spins have large contributions

BFKL NLL kernel fully implemented in HERWIG

Fundamental to compare with data (takes into account jet structure and jet size) → Provides meaningful predictions

Comparison with TeVatron data and prediction for LHC

Good agreement data/predictions better agreement with NLL calculation than with full LL For LHC : large differences in normalisation/shape between LL and NLL → Effects of higher order terms in the di-jet cross-section have to be checked

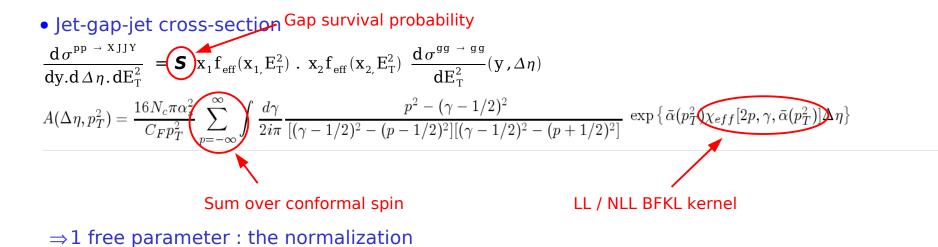
Conclusions

- the correlation in azimuthal angle between two jets gets weaker as their separation in rapidity increases
- we obtained parameter free predictions in the BFKL framework at next-leading accuracy, valid for large enough rapidity intervals
- there is some data from the D0 collaboration at the Tevatron, but for rapidity intervals $\Delta\eta$ smaller than 5
- our predictions underestimate the correlation while pQCD@NLO predictions overestimate it prospects for future measurements:
- at the Tevatron : the CDF miniplugs cannot measure pT well but are suited for azimuthal angle measurements
- at the LHC : feasibility study in collaboration with Christophe Royon (D0/Atlas) and Ramiro Debbe (Star/Atlas)

Therefore a measurement of the cross-section $d\sigma hh \rightarrow JXJ / d\Delta\eta dR d\Delta\Phi$ at the Tevatron (Run 2) or the LHC would allow for a detailed study of the QCD dynamics of Mueller-Navelet jets. In particular, measurements with values of $\Delta\eta$ reaching 8 or 10 will be of great interest, as these could allow to distinguish between BFKL and DGLAP resummation effects and would provide important tests for the relevance of the BFKL formalism.

Effect of non-zero conformal spin

Different models proposed


- QCD di-jets production
 No gap because of soft QCD radiations
- Color-singlet exchange

Gap between jets

One color-singlet candidate is the BFKL pomeron

Cross-section in the BFKL framework

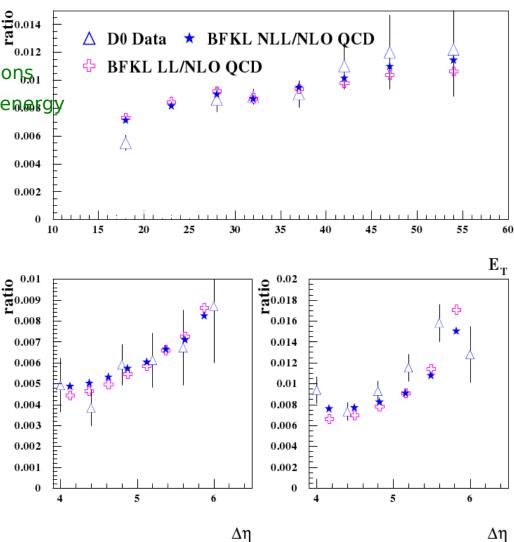
$$Relevan \underline{y_1 - y_2}_2$$

Comparisons with DØ data

DØ data selection

- Inclusive di-jet sample 2 high E_{τ} jets in opposite forward regions.
 - Central gap $\Delta \eta > 2$ with no significant energy
- Fraction of di-jets events with gap

Prediction


- BFKL jet-gap-jet cross-section
 LL or NLL kernel
 Gap survival probability S=0.1
 - Hadronization not taken into account
- Inclusive di-jet cross-section
 QCD predictions with NLOJet++
 Hadronization not taken into account

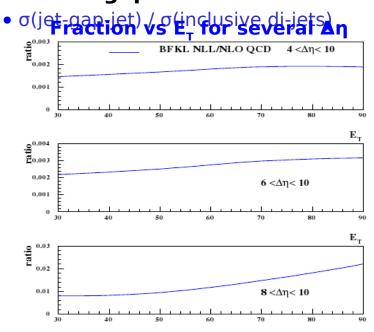
Comparisons

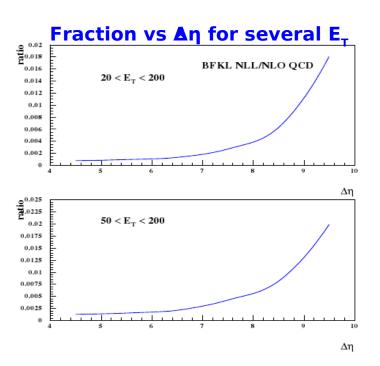
- Overall normalization fit to data k=0.84 with LL-BFKL prescription k=1.00 with NLL-BFKL prescription
- Shape

Correct agreement between NLL-BFKL prediction and DØ data Need checks with NNLO QCD

Predictions for LHC

Selection cuts


• Inclusive di-jet sample


2 high $\mathsf{E}_{_{\mathsf{T}}}$ jets in opposite forward regions + trigger condition

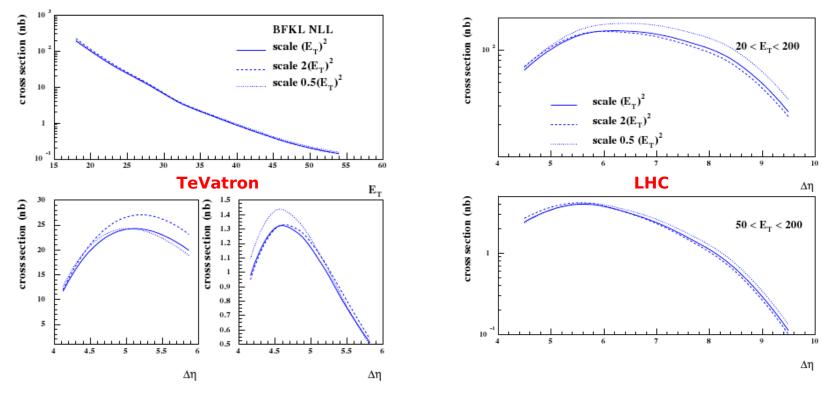
Central gap with no significant energy

 \rightarrow Need low-luminosity runs

Fraction of gap events

Contribut Percental Challenging because it needs a good calibration of forward jets

Eт


Systematic uncertainties

Renormalization scale dependence

Method

Variation $\frac{1}{2} Q^2 \rightarrow 2 Q^2$ Appropriate substitution $\overline{q} (Q^2)$ Modify the effective BFKL kernel Modify energy scale

• Results

Jet-gap-jet cross-section is a robust test of the BFKL regime