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1. Introduction
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2. Machine Learning

2.1 What is Machine Learning

Fundamentally Machine Learning is a mean of building a model of data [1]. It can
be understood as the development of mathematical models which helps understand-
ing und recoginizing patterns in data sets. Generally, these models have parameters
which are fitted according to the observed data. Therefore, a data set works as the
input for the model (basically a computer program) and once the model have been
fit to previously seen data, it can be used to predict, recognize patterns and even un-
derstand aspects of newly observed data. This way, the program can be considered
to be ”learning” from the data.

Basically, there are two kinds of Machine Learning: supervised and unsupervised
learning.

Supervised learning involves modelling a relationship between measured fea-
tures of data and some label associated with it. Once the model is done, it can be used
to apply labels to unknown data [1]. An example of supervised learning use is clas-
sifying messages into categories spam or not, understood as labels. In this context,
mapping algorithms can recognize words which are common in spam messages. A
way to ”train” the model (ML algorithm) consists of using these spam words as in-
puts and associating them with the label spam through classification rules (set up
of parameters). Therefore, when the model receive a brand-new dataset (unknown
text, in this context) and it contains these previously learned words, certainly it will
classify the text as a spam message according to the adjusted parameters.

Unsupervised learning involves modeling the features of a dataset without ref-
erence to any label. These models include tasks such as clustering and dimension-
ality reduction. Clustering algorithms identify distinct groups of data, while dimen-
sionality reduction algorithms search for more succinct representations of the data.
Unsupervised learning models use the intrinsic structure of the data to determine
which subsets of data are related or not [1].

2.2 Machine Learning in High Energy Physics

The greatest challenge at the LHC at CERN is to collect and analyse data in a efficient
way. Thus, sophisticated machine learning methods have been researched in order
to tackle this problem.

Jets are cone-like showers of hadrons originated from high energy quarks and
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gluons or from decays which envolve Z0, W− and W+ bosons. The Z0 boson me-
diates decays which charge is not changed and W− and W+ mediate decays with
changes of charge [2].

These decays generally produces highly boosted jets and these jets can merge
into a single jet due to the large momentum and mass of the particles.

For example, in a collision between two protons p+p+, lots of particles can be
generated through many kinds of processes. Even though, we can have specific ones
which produce the referenced bosons.

For example, a quark down (d) with charge = −1/3 from one proton can turn
on a quark up (u) with charge = 2/3. If it occurs, the total charge must be the same.
Hence, a particle whose charge is −1 should be produced. This way, we have a
process mediated by a particle W−, which carries a −1 charge and after the process
is dissociated from the quark up produced. Furthermore, in the same collision, Z0

and W+ bosons can be generated through other processes. After that, these bosons
can originate lots of gluons and also quarks up or quarks down again in a process
called hadronisation, producing jets whose particles have large momentum and mass.
Hier, this kind of jets will be called Boson Jets.

On the other hand, gluons and quarks are produced through other processes
which do not envolve the referenced bosons still in the same collision. This kind of
jets has high energies too. In this context, they will be called QCD Jets.

Talking about High Energy Physics context, in order to discover and study such
systems, it is vital to discriminate boosted heavy particle jets which come from bosons
and jets originated from quarks and gluons in QCD processes [3].

This way, determining which particle originates each jet can be understood as
a machine learning classification problem.

One way to classify these jets is presented in [3]. In this paper, methods for
preprocessing and discrimination are inspired by techniques in the field of computer
vision and the task is similar to that of facial recognition. Thus, jet-specific analogs
to the algorithms used in facial recognition were developed.

On the other hand, other studies have explored the possibility of reconstruct-
ing particles using image recognition techniques based on convolutional neural net-
works too [4]. This approach is described in the next sections.

The collision between two protos previously described can be simulated using
the applications Pythia8 and Fastjet. Thus, in the next section of there is an brief
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introduction to Pythia8.

Responsible: Amanda

2.3 Artificial Neural Networks

The area of Neural Network tries to mime the behaviour of the human brain, that is
a highly complex parallel system, consisting of about 1011 neurons of several types
and shapes [5]. From its first steps, the area of Artificial Neural Networks has been
inspired by such complexity of the brain by acknowledging that its ability to make
computations and recognize patterns can outperform even the most recent super-
computers, e.g., the human brain is able to identify a familiar face on an unfamiliar
scene in under 200ms, while performing less complicated tasks takes a lot longer on
modern computers [6].

It is largely believed that the computational power delivered by such models
comes from its high degree of parallelism and the capacity to learn, making it possible
for these system to generalize and provide good approximate answers to complex
problems [6].

The studies on the field of Neural Network started with studies of a single
Neuron - the basic brain structure. In 1940, the first machinary model of neuron
was proposed by McCulloch and Pitts [7]. They proposed to model the Neuron as
a simple activation machine, i.e, a threshold device that was able to perform simple
logical functions - conjunctions and disjunctions. Still, the procedure for learning was
yet to be defined.

It was only in 1949, that Hebb proposed a theory on how the learning over
time affects the interaction between neurons [8]. In 1952, the model that approaches
the one currently being used was developed by Hodgin and Huxley in [9]. They
included the ideas of neuronal firing and the effects of the threshold on the neural
signal propagation.

2.3.1 Perceptron

2.3.2 Back-propagation training procedure

2.4 Random Forests
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3. Pythia 8
Pythia 8 is a tool for generation of high-energy collisions. The particles are produced
in vacuum.It contains many libraries of hard interactions and models for initial and
final state parton showers showers, multiple parton-parton interactions, beam rem-
nants, string fragmentation and particle decays. Pythia also has a set of utilities and
interfaces to external programs. Thus, it is possible to run it together with other
applications such as Root or Fastjet.

Currently, the program only works with pp, pp, e−e+ and µ+µ− incoming
beams. The list of all processes already implemented can be seen in [10].

3.1 Program Flow

In Pythia context, an event represents a collision (the main one). Thus, a collision
between p− and p+ can be understood as an Pythia event.

Basically, a Pythia simulation can be done in three steps:

1. Initialisation: here the main settings of the event (main collision) such are set
up. Some of these settings are:

• the energy of the initial beams at the LHC

• the processes swittched on

Sometimes, we can choose the particles which will appear in the list according
to some particle attribute such as the transverse momentum.

2. Generation of individual events: the event loop and conditions to perform
analysis.

3. Statistics: generation of statistics and histograms about the event

3.2 A Pythia Hello World Program

In order to clarify the program flow, there is an example of a Pythia simulation. This
example is based on the main01 example of Pythia 8 [11].

• Event: We generate 100 events of a proton-proton collision, energy of 8000
TeV at LHC.

• Processes: all processes from the HardQCD group are enabled. In order
to understand other kinds of processes, see: http://home.thep.lu.se/ tor-
bjorn/pythia81html/Welcome.html.
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• Listing Condition: all particles which pT ≥ 20 GeV.

• Statistics: histogram showing the number of particles which are final and
charged X number of events with these number of particles.

Therefore:

#include "Pythia8/Pythia.h" // Include Pythia headers.

using namespace Pythia8; // Let Pythia8:: be implicit.

int main() {

// Set up generation.

Pythia pythia; // Declare Pythia object

pythia.readString("Beams:eCM = 8000."); // 8 TeV CM energy.

pythia.readString("HardQCD = on"); // Switch on all HardQCD processes.

pythia.init();

Hist mult("charged multiplicity", 100, -0.5, 799.5); // Set up histogram

// Begin event loop. Generate event. Skip if error.

for (int iEvent = 0; iEvent < 100; ++iEvent) {

if (!pythia.next()) continue;

// Find number of all final charged particles and fill histogram.

int nCharged = 0;

for (int i = 0; i < pythia.event.size(); ++i)

if (pythia.event[i].isFinal() && pythia.event[i].isCharged())

++nCharged;

mult.fill( nCharged ); //Fill the histogram

// End of event loop. Done :)

}

pythia.stat();

return 0;

}

Notes:
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1. If there are many initial settings, it is better setting up these parameters from
an external file pythia.readFile("main03.cmnd") instead of using the
pythia.readString("") instruction.

2. Pythia will list in the output file only the particles which belong to the first
event.

3.3 The Output

The Pythia 8 output files from main0n examples are basically the list of particles
produced in the first event. If any listing condition such as a minimum transverse
momentum is applied, this list will contain only particles which satisfy the condition.
The output file can also contain histograms.

In the list, each line represents a particle and each column shows an attribute
of it. These attributes are:

• id: this code indicates the kind of the particle according to the PDG par-
ticle codes []. For example: code 2212 is assigned to the proton (p) and
code −2212 is assigned to the antiproton p.

• status: status code. The full set of codes provides information on where
and why a given particle was produced. The key feature is that a particle
is assigned a positive status code when it is created, which then is negated
if later it branches into other particles. The mechanism of this branching
can be inferred from the status code of the daughters. Thus, at any given
stage of the event-generation process, the current final state consists of the
particles with positive status code.

• mothers/daughters: shows the relation between particles. Naturally, if a
particle generates another, the first is the mother of the second.

• m: the particle mass.

• px: component x of the transverse momentum.

• py: component y of the transverse momentum.

• pz: component z of the transverse momentum.

• e: the fourth component of the momentum.

In order to learn more attributes, see [10]

Responsible: Amanda
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4. Sample Generation
As it was described in Subsection 2.2, a collision between two protons where Boson
Jets and QCD Jets are mixed up can be simulated through Pythia8. In this section,
there is an example of a Pythia8 code which simulates this situation:

int main(int argc, char* argv[])

{

// Basic run parameters

int nEvent = 1000;

int nEventPU = 0;

int nListJets = 3;

int processType = 0; //0 = background, 1 = signal

// LHC parameters

double sqrtsInGeV = 13000.0; //LHC collision energy

double meanPU = 0.0;

double _minJetMass = 65;

double _maxJetMass = 95;

double _minJetPt = 200; //Range of transverse momentum

double _maxJetPt = 250;

...

Event &event = pythia.event;

Event &process = pythia.process;

Event &eventPU = pythiaPU.event;

...

// Process selection.

if(processType == 0) {

pythia.readString("HardQCD:all = on"); //QCD Jets

}

if(processType == 1) {

pythia.readString("WeakDoubleBoson:ffbar2ZW = on"); //Boson Jets

pythia.readString("23:onMode = off");

pythia.readString("23:onIfAny = 12 14 16");

pythia.readString("24:onMode = off");

pythia.readString("24:onIfAny = 1 2 3 4 5");

}

...
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pythiaPU.readString("SoftQCD:nonDiffractive = on"); //Pile Up

...

pythia.init();

pythiaPU.init();

...

// Event loop and Pile Up Event generation loop

for (int iEvent = 0; iEvent < nEvent; ++iEvent)

{

...

for (int iEventPU = 0; iEventPU != nEventPU; ++iEventPU)

{

...

}

}

// Statistics. Histograms.

pythia.stat();

// Done.

return 0;

}

Hier we have the simulation of 1000 events, including the generation of Boson
Jets, QCD Jets and Pile Up events. Pile Up events are the production of particles
whose energy is not so high during the collision. Thus, it can be understood as
another kind of background. The choice of which jets will be generated depends
basically on the parameterProcessType.

Hence, when the ProcessType = 0, only QCD Jets will be generated. As we
are interested mainly in Z0 and W+ bosons identification, naturally we call QCD Jets
background. In this case, only gluon particles are produced and the program output
is shown in Table 1.

On the other hand, if the ProcessType = 1, Z0 and W+ bosons, quarks and
another particles are produced. Hence, this kind of process is called signal. This
output is shown in Table 2.
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Table 1: Output for backgroung generation
id name status mothers daughters colors px py pz e m
90 (system) -11 0 0 0 0 0 0 0.000 0.000 0.000 13000.000 13000.000
2212 (p+) -12 0 0 3 0 0 0 0.000 0.000 6500.000 6500.000 0.938
2212 (p+) -12 0 0 4 0 0 0 0.000 0.000 -6500.000 6500.000 0.938
21 (g) -21 1 0 5 6 101 102 0.000 0.000 69.018 69.018 0.000
21 (g) -21 2 0 5 6 103 104 0.000 0.000 -361.302 -361.302 0.000
21 g 23 3 4 0 0 101 104 -66.853 -143.051 -148.714 -148.714 0.000
21 g 23 3 4 0 0 103 102 66.853 143.051 -143.570 -143.570 0.000

Table 2: Output for signal generation
id name status mothers daughters colors px py pz e m
90 (system) -11 0 0 0 0 0 0 0.000 0.000 0.000 13000.000 13000.000
2212 (p+) -12 0 0 3 0 0 0 0.000 0.000 6500.000 6500.000 0.938
2212 (p+) -12 0 0 4 0 0 0 0.000 0.000 -6500.000 6500.000 0.938
21 (g) -21 1 0 5 6 101 102 0.000 0.000 69.018 69.018 0.000
21 (g) -21 2 0 5 6 103 104 0.000 0.000 -361.302 -361.302 0.000
21 g 23 3 4 0 0 101 104 -66.853 -143.051 -148.714 -148.714 0.000
21 g 23 3 4 0 0 103 102 66.853 143.051 -143.570 -143.570 0.000

Responsible: Thiago, Amanda
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5. Jet Finding and Preprocessing
Responsible: Thiago

After generating jet events with Pythia, we convert them to jet images in order
to treat them with Machine Learning tools that are already configured for image
recognition. In contemporary particle physics experiments, the particles that make
up a hadronic jet are reconstructed individually through the signals they leave in the
different subsystems that make up the detector, and any further analysis is made on
those reconstructed particle candidates. In this study we take a simpler approach,
working only with

We consider a very simplistic detector model, composed only of a segmented
calorimeter - a detector made of individual cells that are capable of measuring the
total energy deposited in them by particles of any kind, but that cannot distinguish
the signal deposited by different particles in the same cell. The calorimeter follows
roughly the geometry of the real systems present at both the ATLAS and CMS exper-
iments: the calorimeter is segmented in both η and φ directions, having 63 bins that
cover the range [−π, π] in φ and 50 bins that cover the range [−2.5, 2.5] in η, leading
to a grand total of 3150 cells of size (0.1× 0.1). For each event, we convert it to a
“calorimeter representation” by looping over the list of visible particles and adding
its transverse energy to the corresponding cell. Figure 1 shows the representation of
a dijet (background) event in the simulated calorimeter. This step is equivalent to the
creation of the digital image itself, where information about the individual photons
that hit the pixels is lost but the total amount of energy that hit each pixel is available.

5.1 Jet Finding

In order to identify hadronic jets in the calorimeter, we use the Fastjet framework [].
We model each calorimeter cell by a massless 4-vector where the (η, φ) coordinates
are taken as the center of the cell and its transverse energy ET is taken as the total
transverse energy deposited in the cell. This step brings us to an event representation
in the form of a list of 3150 4-vectors that can be input to Fastjet in order to find
hadronic jets. We use the Cambridge-Aachen jet algorithm [], with a characteristic
size R = 1.2, and consider only jets with pT above 30 GeV. We consider only the
leading jet in each event, and only if it has pT in a given range; the full set of pT

intervals considered in this study is 250–300, 450–500, 600–650, 750–800, 950–1000,
1150–1200 and 1400–1450 GeV.
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Figure 1: Example of calorimeter representation of event. The x-axis of the plot
represents the η coordinate, while the y-axis represents the φ coordinate. The z-axis
represents the total ET in the each calorimeter cell. The event is a dijet (background)
event, where the leading jet has pT = 258 GeV, η = 1.1, φ = 0.88 and mass = 69 GeV.

5.2 Preprocessing

Preprocessing must be done in the jet images in order to input them to the machine
learning frameworks. The first step or preprocessing is noise reduction, which in our
case can be done with the so called jet trimming []. Jet trimming is a particular tech-
nique for jet grooming that allows to reduce the effect of soft and collinear emissions
that may spoil the jet kinematic resolution; it is also useful to minimise the effects of
pileup interactions in the jet. We employ trimming with the kT jet algorithm [] and a
minimum subjet pT fraction of 5%. In order to select good events for the list of inputs
to the ML, we discard events where the trimmed jet has mass outside of the range
65–95 GeV. The trimmed jet has a reduced list of components; from this point on,
we work only with the trimmed jet; operationally we achieve this by “zeroing” the
cells that comprise the jet in the calorimeter and refilling that region with the filled
components. That process is shown in Fig. 2

The next step in preprocessing is the definition of points of interest and the align-
ment step. The noise reduction step naturally defines the points of interest as the loca-
tion of the subjets that emerge post-trimming. Operationally, this is done as follows:

• We locate the cell that contains the jet centroid, and save only the cells in
a (25× 25) rectangle around it. In this way we guarantee that all cells in
a radius R = 1.2 are considered. We then do a translation to a local frame
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Figure 2: Example of calorimeter representation of event. The x-axis of the plot
represents the η coordinate, while the y-axis represents the φ coordinate. The z-axis
represents the total ET in the each calorimeter cell. In the left plot, the cells located
around the leading jet are zeroed out, while in the right plot those cells are replaced
by the trimmed components.

(x, y) such that in this frame the centroid cell is at (0, 0).

• We do a rotation to another local frame (x′, y′) such that in this frame the
leading subjet has a higher y′ coordinate than the subleading subjet, while
their x′ coordinates are identical; if there is only one subjet no rotation is
performed.

• If the sum of ET of the cells with x′ < 0 is smaller than the sum of ET of
the cells with x′ ≥ 0, we do a reflection transformation x′′ = −x′.

The final preprocessing step is the normalisation step. This step reduces the
range of values in the features input to the ML. In our case, we simply rescale the ET

of the calorimeter cells by a constant factor c such that:

1
c ∑

i
E2

T,i = 1 (1)

The whole alignment and normalisation process is illustrated in Fig. 3

The content of the cells that comprise the jet is then saved in a plain text file.
The contents of all the cells are saved sequentially, in the following format:

ET(η1, φ1), ET(η1, φ2), . . . , ET(η1, φ63),

ET(η2, φ1), ET(η3, φ2), . . . , ET(η2, φ63),

. . .

ET(η50, φ1), ET(η50, φ2), . . . , ET(η50, φ63),

(2)
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Figure 3: Example of calorimeter representation of jet. The x-axis of the plot rep-
resents the η coordinate, while the y-axis represents the φ coordinate. The z-axis
represents the total ET in the each calorimeter cell. In the top left plot, the coordi-
nates have been changed such that the centroid cell is at (0, 0). In the top right plot,
a rotation has been executed such the vector that that connects the two subjets has
no x component. In the bottom left plot, a reflection has been executed such that the
sum ET of all cells with x < 0 is smaller than the sum ET of all cells with x ≥ 0.
Bottom right: all cells have their content rescaled by c such that of 1

c ∑i E2
T,i = 1.
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6. Machine Learning Frameworks
Responsible: Jose, Rafael

6.1 Python Neural Networks

In this section we aim to describe a procedure to deploy a basic python software stack
to develop Artificial Neural Networks. We will first describe the procedure used to
install the needed software, then we will describe briefly how a simple application
can be built on top of a high level framework.

6.1.1 Environment Setup

Managing dependencies on a data analysis project can be a hard task. Building a sta-
ble environment depends on the ability to install the correct version of the software
tools.

For this purpose, tools like Anaconda make possible for users to create Virtual
Python Environments. These environments provide an isolation layer between two
python setups, i.e., it allows several python installations to to be used in the same
operating system.

The basic idea that allow the isolation is that the python virtual machine looks
for its libraries at specific paths while executing a program. Tools like Anaconda and
VirtualEnv override specific environment variables, indicating the correct python in-
stallation path and so on.

The Anaconda installation is very straight forward and one only needs to down-
load the installation software1 and run it:

# bash Anaconda.sh

The software can be installed in user space, therefore no administrative rights are
needed to install it. After the installation the conda command line there should
have been made available to the user.

The conda command line allows to switch between environments, create en-
vironments and install different versions of libraries and modules. In order to gather
information about the Anaconda installation one has to perform the following com-
mand:

1https://www.continuum.io/downloads
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# conda info

Current Anaconda install:

platform : osx-64

conda command version : 1.3.2

root directory : /Users/rocknroll/anaconda

default prefix : /Users/rocknroll/anaconda

channel URLS : [’http://repo.continuum.io/pkgs/free/osx-64/’]

environment locations : [’/Users/rocknroll/anaconda/envs’]

For creating a new environment, one must perform the conda create com-
mand and specify the name for the environment and the list of the basic software
that should be installed at the environment. For instance, the following command
will create a virtual environment named python35 with python version 3.5 installed
in it.

# conda create -n python35 python=3.5

Solving package specifications: .

Package plan for installation in environment /Users/rocknroll/envs/

python35:

The following NEW packages will be INSTALLED:

openssl: 1.0.2l-0

pip: 9.0.1-py35_1

python: 3.5.3-1

readline: 6.2-2

setuptools: 27.2.0-py35_0

sqlite: 3.13.0-0

tk: 8.5.18-0

wheel: 0.29.0-py35_0

xz: 5.2.2-1

zlib: 1.2.8-3

Proceed ([y]/n)?

After the creation of the environment, one should issue the activate command:

# source activate python35

# which python

˜/envs/python35/bin/python
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6.1.2 The Keras Framework

Keras is a high-level neural networks API, written in Python (versions 2.7 through
3.6) and capable of running on top of either TensorFlow or Theano.

The initial building block of Keras is a model, and the simplest model is called
sequential. A sequential Keras model is a linear pipeline (a stack) of neural networks
layers. An example of a Neural Net in Keras: The code below defines a single (dense)
layer with 12 artificial neurons, and 8 input variables (features):

from keras.models import Sequential

model = Sequential()

model.add(Dense(12, input_dim=8, kernel_initializer=’random_uniform’))

Each neuron can be initialized with specific weights. Keras provides a few
choices, the most common of which are 2:

• ’random_uniform’: Weights are initialized to

uniformly random small values in (-0.05, 0.05)

• ’random_normal’: Weights are initialized according

to a Gaussian, with a zero mean and small standard

deviation of 0.05.

• zero: All weights are initialized to zero.

Before training a model it is necessary to configure the learning process. This is done
by using the compile method. This method receives three arguments:

1. An Optimizer such as rmsprop or adam;

2. Objective Function - “loss function”. This is the objective that the model will
try to minimize;

3. A list of metrics: metrics=[’accuracy’].

For a multi-class classification problem

model.compile(optimizer=’rmsprop’, loss=’categorical_crossentropy’,

metrics=[’accuracy’])

For a binary classification problem

model.compile(optimizer=’rmsprop’, loss=’binary_crossentropy’,

metrics=[’accuracy’])

2https://keras.io/initializations/
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For regression problem:

model.compile(optimizer=’rmsprop’, loss=’mse’)

For training a model use the fit function. For binary classification:

model = Sequential()

model.add(Dense(32, activation=’relu’, input_dim=100))

model.add(Dense(1, activation=’sigmoid’))

model.compile(optimizer=’rmsprop’,loss=’binary_crossentropy’,

metrics=[’accuracy’])

model.fit(data, labels, epochs=10, batch_size=32)

For categorical classification:

model = Sequential()

model.add(Dense(32, activation=’relu’, input_dim=100))

model.add(Dense(10, activation=’softmax’))

model.compile(optimizer=’rmsprop’, loss=’categorical_crossentropy’,

metrics=[’accuracy’]))

model.fit(data, labels, epochs=10, batch_size=32)

6.1.3 Usage Example - Recognizing Hand-Written Digits

6.2 R Logistic Regression

6.2.1 Environment Setup

Setting up an environment in R has some advantages. Due to the strong relation of
the language to statistical applications, many of the resources needed for machine
learning such as training, testing and evaluation of the algorithm performance are
available out-of-the-box. In GNU/Linux systems, the language generally is avail-
able through the package managers. In Debian like systems, for example, it can be
installed using the following command:

# apt-get install r-base r-base-dev

Besides the language, packages which extend the functionalities could be in-
stalled using the CRAN (Comprehensive R Archive Network) [12]. This can be done
from the R console, opening it (typing R in your terminal) and using the install pack-
age command.

R> install.package("package_name")
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Another very popular resource for developing in R and managing the packages
is RStudio [13], a free and open-source integrated development environment (IDE)
for R. This tool provides an multi-platform (GNU/Linux, Mac and Windows) envi-
ronment for developing projects, presenting a code editor, a R console, an workspace
track and a plot windows, as shows on Figure 4.

Figure 4: RStudio screen. Obtained from [14].

6.2.2 Usage Example
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7. Results
Responsible: Jose, Rafael, Thiago, Vitor

7.1 Jet substructure analysis

The N-subjettiness τN [15] quantifies the capability of clustering the jet constituents
in exactly N subjets. The ratio τ21 = τ2/τ1 is a powerful discriminant between jets
originating from hadronic V decays and from gluon and single-quark hadronization.
Jets coming from hadronic W or Z decays are characterized by lower values of τ21,
given the two-prong substructure of the jet constituents. Fig. 5 shows the distribu-

Figure 5: Distribution of the N-subjettiness τ21 variable for signal and background.

tion of the N-subjettiness τ21 for high energy jets coming from W/Z processes, and
for similar jets coming from QCD processes.

Using logistic regression, we estimate a predicted probability of the form g(z) =
1/(1+ e−z) that assigns samples of outputs larger or equal to 0.5 to the positive class,
and the rest to the negative class. The predicted probability returned by the logistic
regression model is shown in Fig. 6.

As a result of the logistic regression, a separation boundary at τ21 = 0.37 is set
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Figure 6: Predicted probability returned by the logistic regression model. The sepa-
ration between the positive (signal) and the negative (background) class happens at
the N-subjettiness value equal to τ21 = 0.37 .

between the positive and the negative class. The true positive rate (TPR) and false
positive rate (FPR) of the N-subjettiness classifier, obtained by counting the number
of events at the left and right of the boundary τ21 = 0.37, are given by:

TPR = 0.7105 , FPR = 0.2717 . (3)
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7.2 Training and Evaluation of the ML Models

A good way to evaluate a model is to use cross-validation. Starting from two sep-
arate data samples, one for signal and other for background, the workflow requires
the concatenation of the two samples into a single data frame. Consequently, an
stratified-shuffle-split procedure is applied to split the data frame into training (70%)
and testing (30%) sets. In order to avoid random effects and unbalanced distribution
of the classes in the split, the procedure is repeated 10 times.

The receiver operating characteristic (ROC) curve is used to evaluate the per-
formance of a model. It consists of a plot of the true positive rate in the y-axis versus
the false positive rate in the x-axis. For each cross-validation split, a ROC curve was
drawn as presented in Fig. 7. Among the algorithms Multilayer Perceptron, Logistic
Regression, and Random Forest, the best model displaying the higher area under
curve (auc) is the Multilayer Perceptron.

Figure 7: ROC curve obtained by different algorithms Multilayer Perceptron, Logis-
tic Regression, and Random Forest.

The same cross-validation procedure was applied for the most complex model,
that is the convolutional neural network. The ROC curves for the different splits are
shown in Fig. 8.

Finally, all ROC curves are summarized in Fig. 9, as well as in Table 3.
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Figure 8: ROC curve obtained with the convolutional neural network.

Table 3: Evaluation of Machine Learning Models

Model AUC Description

Convolutional Neural Net 0.86 ± 0.003 3 conv. layers, dropout of 25%

Multilayer Perceptron 0.82 ± 0.003 1 hidden layer, 5 neurons

Logistic Regression 0.80 ± 0.004 liblinear solver, L2 regularization

Random Forest 0.79 ± 0.004 Number of trees 24, depth 9
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Figure 9: ROC curve obtained by different ML algorithms, compared with the N-
subjettiness result.
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Figure 10: Accuracy score obtained by different ML algorithms, using Python pro-
gramming interfaces scikit-learn, tensorflow, and keras. The training (test) set cor-
responds to 70% (30%) of the sample. The uncertainty is estimated by taking the
standard deviation over ten cross-validation splits.
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7.3 R Implementation

Another very popular tool for dealing with machine learning issues is R, which is
a language and environment for statistical computing and graphics [16]. In order
to have a glimpse of its syntax and particularities, an implementation of the logistic
regression algorithm was done in R trying to replicate as much as possible the steps
done in Python. The results can be checked in details at its github repository [17].

Firstly, both signal and background data were imported using the proper com-
mands. The mean of every pixel was taken so it would be possible to check the av-
erage behavior of signal and background data. The result can be seen on Figure 11.

(a) Signal Mean (b) Background Mean

Figure 11: Signal and background data means. Note that the jets are concentrated in
the middle of the observed space, as expected.

Since the data set was the same as the previously used, the algorithm is ex-
pected to present a similar performance of the logistic regression done in python.
After running the trained algorithm in the testing set, an accuracy of 72.6% was ob-
served.

This next paragraph should be checked and referenced with the proper refer-
ence.

Although R is a popular choice for machine learning issues, limitations in mul-
ticore processing could be a potential disadvantage when comparing with python.
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8. Conclusion
Responsible: all
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