

Detector Validation for Dark Matter Searches at 380 GeV

OUTLINE

- Software and detector parameter list
- $e^+e^- \rightarrow x x y$ cross sections at 380 GeV
- Validation results focusing on: Photon detection efficiency Electron detection efficiency Background veto efficiency
- Summary and Outlook

Software

- Event generation Whizard 2.3.1
 380 GeV beam spectrum; Generator cut on γ only
- Event simulation and reconstruction software: ILCSoft-2017-08-23, CLIC_o3_v13
- Processors:
 TruthTrackFinder
 Pandora, BeamcalReco, LumicalReco
- Pandora provides particle id for leptons photons and hadrons. For Beamcal and Lumical there is no particle id; it is fixed to electron.
- No pair background was overlaid.

9.10.2017 J-J.Blaising, LAPP/IN2P3

DM Searches Processes at 380 GeV

Process	vs [GeV]	Cuts	σ [fb]
$e^+ e^- \rightarrow \chi_{\circ} \tilde{\chi}_{\circ} \gamma$ (S)	380	$10^{\circ} < \theta \gamma < 170^{\circ}$, E γ >10 GeV	1.0 10 ²
$e^+ e^- \rightarrow v \overline{v} \gamma$ (IB)	380	$10^{\circ} < \theta \gamma < 170^{\circ}$, E γ >10 GeV	$2.7 \ 10^3$
$e^+ e^- \rightarrow e^+ e^- \gamma$ (B1)	380	$10^{\circ} < \theta \gamma < 170^{\circ}$, E γ >10 GeV	8.9 10 ⁴
$e^+ e^- \rightarrow \gamma \gamma$ (B2)	380	$10^{\circ} < \theta \gamma < 170^{\circ}$, E γ >10 GeV	$3.9\ 10^3$
$e^+ e^- \rightarrow \mu^+ \mu^- \gamma$ (B3)	380	$10^{\circ} < \theta \gamma < 170^{\circ}$, E γ >10 GeV	3.6 10 ²
$e^+ e^- \rightarrow \tau^+ \tau^- \gamma$ (B4)	380	$10^{\circ} < \theta \gamma < 170^{\circ}$, E $\gamma > 10$ GeV	2.8 10 ²

Processes used for the current validation studies:

Data samples generated with $10^{\circ} < \theta \gamma < 170^{\circ}$, $E\gamma > 10$ GeV

 Essential to reduces the rate of reducible background events which mimic mono or multiphoton events to have a good sensitivity to new physics when looking for excess in e⁺ e⁻→ v ∇ γ (IB)

Photon Detection Efficiency

Left: dN/dθγ True(blue) and Reconstructed(red)

Right: $d\epsilon\gamma/d\theta\gamma$; the reconstruction efficiency is > 99% over a large θ range; it decreases to 40% ~ 9.5° and 170.5°; Ecal crack. Events with θ <10 or θ >170 ?; beam crossing boost. Analysis cut after reconstruction 10°< $\theta\gamma$ <170° discards these

Electron Detection Efficiency

Left : $dN/d\theta e$; True(blue) and Reconstructed e (red) Right: $d\epsilon/d\theta e$ the reconstruction efficiency is ~ 0.99 except in the F/B regions <12 and > 168°; => zoom in F region.

Electron Detection Efficiency

Left: $dN/d\theta e$; Right: $d\epsilon/d\theta e$

The e reconstruction efficiency is poor in 3 regions

θe< 25 mrad: Beam pipe, Beamcal transition region

θe~100 mrad: StS beam pipe

170 mrad < θe <200 mrad: Ecal crack and end of tracker

 $=>_9$ Display of $e^+e^- \rightarrow e^+e^-$ Laise yents

Event 1296 Ecal crack

 $e^+e^- \rightarrow e^+e^- \gamma$ event:

- e^- at 9.6°: the track is well reconstructed but the e^- is identified as a π^- (no ecal cluster, Ecal crack)
- e⁺ at 170.6° the track is not reconstructed, the e⁻ is reconstructed as N (Ecal crack)
- e id unreliable, but the tracking and Hcal energy measurement allow event veto.

Event 113 Tracking

 $e^+e^- \rightarrow e^+e^- \gamma$ event:

- e^- at 12°: the track is not reconstructed and the e^- is identified as a γ ; Ecal energy measurement.
- e^+ at 168°: the track is not reconstructed, the e^- is reconstructed as a γ

e id unreliable but Ecal energy measurement allow event

Event 107

 $e^+e^- \rightarrow e^+e^- \gamma$ event:

- The e^- at θ =10 mrad is in the beam pipe and the e^+ at θ =173.9° showers in the StS beam pipe. It creates hits but no cluster is reconstructed in the Lumical.
- => Event not rejected

Electron Detection Efficiency

Left: $dN/d\theta e$ (T and R); Right: $d\epsilon/d\theta$ For reconstructed e or y or N matched with a true e the detection efficiency ~ 170-200 mrad is increased to ~99% The efficiency ~ 100 mrad is increased to ~ 50% For $12^{\circ} < \theta < 168^{\circ}$ the particle ID is unreliable or impossible. Improve efficiency ~ 100 magad LARP/IN2P3 10

Beam Pipe

The stainless steel conical beam pipe has a thickness of 4 mm at 310 mm of IP and 4.8 mm close to the Lumical. It has a half cone angle of 6.6°. It creates a dead region of ~ 15 mrad. Andre has designed a beam pipe with a thickness of 1 mm at 310 mm from the IP and 4.8 mm in front of the

Event 107

 $e^+e^- \rightarrow e^+e^- \gamma$ event:

4 mm beam pipe (left); 128 GeV e⁺; no energy cluster in Lumical => event not rejected.

1 mm thickness (right); 128 GeV e⁺ matched with 2 clusters In Lumical having 41 and 25 GeV => event rejected.

Electron Detection Efficiency

Left: $d\epsilon/d\theta$; StS beam pipe of 4.8 mm; $\epsilon \sim 50\%$

Right: $d\epsilon/d\theta$; StS beam pipe of 1 mm

The detection efficiency increases to > 70%,

Single particle detection efficiency -> Background event veto.

Event Veto Inefficiency; 4mm BP

 $dN/d\theta e^-d(\pi-\theta)e^+$ for events without reconstructed e^- and e^+ and without Ecal, Hcal energy veto; inefficiency ~ 3.3% => 2937 fb. The e detection inefficiency in the region 90 mrad < θ < 200 mrad in combination with the inefficiency for θ < 25 mrad is the largest contribution

Event Veto Inefficiency; 4mm BP

 $dN/dθe^-d(π-θ)e^+$; Events without reconstructed e^- requiring the energy deposit E in Ecal, Hcal or Lumical E<5 GeV => Veto inefficiency ~ 0.6% => 490 fb.

For θe^- and π - θe^+ < 25 mrad; Inef ~ 0.1% => 100 fb (20%) Inefficiency dominated by events with one e < 25 mrad and the other in the crack due to StS beam pipe.

Event Veto Inefficiency; 1mm BP

dN/dθe⁻d(π -θ)e⁺; Events without reconstructed e⁻ requring the energy deposit in Ecal, Hcal, Beamcal or Lumical E<5 GeV Veto inefficiency reduced by a factor 5 to $^{\sim}$ 0.1% => 101 fb. Most events have θe⁻ and π -θe⁺< 25 mrad

B Cross Sections before and after Energy deposit veto

Process	√s [GeV]	Cuts	σ [fb]	σ[fb]
$e^+ e^- \rightarrow v v \gamma$ (IB)	380	$10^{\circ} < \theta \gamma < 170^{\circ}$, $E\gamma > 10 \text{ GeV}$	2.7 10 ³	2.7 10 ³
$e^+ e^- \rightarrow e^+ e^- \gamma$ (B1)	380	$10^{\circ} < \theta \gamma < 170^{\circ}$, E $\gamma > 10$ GeV	8.9 10 ⁴	4.9 10 ²
$e^+ e^- \rightarrow \gamma \gamma$ (B2)	380	$10^{\circ} < \theta \gamma < 170^{\circ}$, $E\gamma > 10 \ GeV$	3.9 10 ³	<0.01
$e^+ e^- \rightarrow \mu^+ \mu^- \gamma$ (B3)	380	$10^{\circ} < \theta \gamma < 170^{\circ}$, E $\gamma > 10$ GeV	$3.6\ 10^2$	0.02
$e^+ e^- \rightarrow \tau^+ \tau^- \gamma$ (B4)	380	$10^{\circ} < \theta \gamma < 170^{\circ}$, $E\gamma > 10 \ GeV$	2.8 10 ²	0.01

B Cross sections for 4 mm B.P before and after veto After veto B2, ...B4 <=0.02 fb. B1 = 490 fb. With a 1mm StS beam pipe B2 is reduced to 101 fb. Is this level of background adequate for the DM searches?

dN/dEγ; 4/1 mm beam pipe

Left : $dN/dE\gamma$ for S+IB+B1, S, IB , B1 for 4mm beam pipe Right: $dN/dE\gamma$ for S+IB+B1, S, IB , B1 for 1mm beam pipe With a 4 mm beam pipe B1, $e^+e^-\rightarrow e^+e^-\gamma$ is affecting significantly the energy distribution in the region E γ <80 GeV

dN/dMRecγ; 4/1 mm beam pipe

Left : dN/dMRec for S+IB+B1, S, IB , B1 for 4mm beam pipe Right: dN/dMrec for S+IB+B1, S, IB , B1 for 1mm beam pipe With the 4 mm beam pipe the B1, $e^+e^- \rightarrow e^+e^- \gamma$ is affecting the recoil mass distribution for M>300 GeV. It makes the excess and mass measurement difficult.

Summary

 $e^+e^- \rightarrow X X \gamma$ were used to study the γ and e detection efficiency at 380 GeV without pair background overlaid.

- For events with 10° < Θγ < 170° the γ reconstruction efficiency is ~ 99%.
- The e⁻ (γ , N) reconstruction efficiency is ~ 99% for 1° < $\Theta\gamma$ < 179° except for Θ ~ 6° and Θ ~174°; StS conical beam pipe location. It affects the veto efficiency for searches with missing energy.
- Reducing the beam pipe thickness improves the veto efficiency allowing to reduce the background cross section to a level adequate for DM searches.

Outlook

Perform the same study at 380 GeV with pair background and $\gamma\gamma$ -> hadrons overlaid.

Check γ energy resolution and its impact on the DM mass measurement.

Backup