

IWHSS 2018 UNIVERSITÄT BONN

19-21 March

A global fit of partonic Transverse Momentum Dependent distributions

Filippo Delcarro

In collaboration with A. Bacchetta, C. Pisano, M. Radici, A. Signori

3DSPIN: structure of the nucleon

Transverse Momentum Distributions: TMD PDF

dependence on:

longitudinal momentum fraction $\, x \,$ transverse momentum $\, {m k}_{\perp} \,$ energy scale

Extraction from SIDIS & Drell-Yan

Extraction from SIDIS & Drell-Yan

Semi-inclusive Deep Inelastic Scattering

TMDs: Fragmentation Function

TMD Fragmentation Functions (TMD FFs)

dependence on:

longitudinal momentum fraction \mathbf{z}

transverse momentum P_{\perp}

energy scale

Structure functions and TMDs

multiplicities

 $\cdot \delta^2(zk_T - P_{hT} + P_T) + Y_{UU,T}(Q^2, P_{hT}^2) + \mathcal{O}(M^2/Q^2)$

Structure functions and TMDs

$$F_{UU,T}(x, z, P_{hT}^{2}, Q^{2}) = \sum_{a} \mathcal{H}_{UU,T}^{a} (Q^{2}; \mu^{2}) \int d^{2}k_{T} d^{2}P_{T} f_{1}^{a} (x, k_{T}^{2}; \mu^{2}) D_{1}^{h/a} (z, P_{T}^{2}; \mu^{2})$$

$$\cdot \delta^{2} (zk_{T} - P_{hT} + P_{T}) + Y_{UU,T} (Q^{2}, P_{hT}^{2}) + \mathcal{O} (M^{2}/Q^{2})$$

At our accuracy level (LO-NLL):

$$\mathcal{H}_{UU,T} \simeq \mathcal{O}\left(\alpha_s^0\right)$$
$$Y_{UU,T}\left(Q^2, P_h^2 T\right) \simeq 0$$

Structure functions and TMDs

TMD Evolution

Width of TMDs changes of one order of magnitude \rightarrow Evolution

Evolved TMDs

Fourier transform: ξ_T space

Non-perturbative contributions have to be extracted from experimental data, after parametrization

Model: non perturbative elements

sum of two different gaussians with kinematic dependence on transverse momenta

width x-dependence

$$g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$$

where

$$N_1 \equiv g_1(\hat{x})$$
$$\hat{x} = 0.1$$

$$\widetilde{F}_{i}, \underbrace{\text{Mpdel}_{pon} \text{ perturbative elements}}_{\langle \mathbf{k}_{\perp}^{2} \rangle_{\mathbf{i}} + \lambda \langle \mathbf{k}_{\perp}^{\prime 2} \rangle_{\mathbf{i}}}^{\mathsf{T} - \langle \mathbf{k}_{\perp} \rangle_{\mathbf{i}}}$$

Free parameters

$$N_1, \alpha, \sigma, \lambda$$
4 for TMD PDF $N_3, N_4, \beta, \delta, \gamma, \lambda_F$ 6 for TMD FF

$$g_K = -g_2 \frac{b_T^2}{2}$$

1 for NP contribution to $g_2 = 0.14 \pm$ TMD evolution

In total we have **11** parameters, for intrinsic transverse momentum (4 PDFs, 6 FFs) and evolution (g2)

Experimental data

1514 data points

Z Production

90 data points Q2 > 1.4 GeV² 0.2 < z < 0.7 Ρ_{hT} , q_T < Min[0.2Q , 0.7Qz] + 0.5 GeV

> Motivations behind kinematical cuts TMD factorization (Ph_T/z << Q²) Avoid target fragmentation (low z) and exclusive contributions (high z)

Experimental data

Total: 8059 data

Data region

Data region

	Framework	HERMES	COMPASS	DY	Z production	N of points
Pavia 2017 (+ JLab)	LO-NLL					8059

[JHEP06(2017)081]

Summary of results

Total number of data points: 8059

Total number of free parameters: 11 → 4 for TMD PDFs → 6 for TMD FFs → 1 for TMD evolution

 $\chi^2/d.of. = 1.55 \pm 0.05$

COMPASS data SIDIS h⁺

to avoid known problems with Compass data normalization:

Observable

$$\frac{m_N^h\left(x, z, \boldsymbol{P}_{hT}^2, Q^2\right)}{m_N^h\left(x, z, \min[\boldsymbol{P}_{hT}^2], Q^2\right)} 22$$

COMPASS data SIDIS h⁺

Revised Data: [Phys.Rev. D97 (2018) no.3, 032006]

Observable:

 $m_N^h\left(x, z, \boldsymbol{P}_{hT}^2, Q^2\right)$ $m_N^h(x, z, \min[P_{hT}^2], Q^2)$ 23

Drell-Yan data

‡ Fermilab

Q² Evolution: The peak is now at about 1 GeV, it was at 0.4 GeV for SIDIS

Z-boson production data

normalization : fixed from DEMS fit, different from exp. (not really relevant for TMD parametrizations)

Stability of our results

Test of our default choices

How does the χ^2 of a single replica change if we modify them?

```
Original \chi^2/dof = 1.51
```

Normalization of HERMES data as done for COMPASS: χ^2 /dof = 1.27

Parametrizations for collinear PDFs (NLO GJR 2008 default choice): NLO MSTW 2008 (1.84), NLO CJ12 (1.85)

More stringent cuts (TMD factorization better under control) $\chi^2/dof \rightarrow 1$ Ex: Q2 > 1.5 GeV²; 0.25 < z < 0.6; PhT < 0.2Qz $\Rightarrow \chi^2/dof = 1.02$ (477 bins)

Analysis of revised SIDIS data from COMPASS

[Phys.Rev. D97 (2018) no.3, 032006]

Revised Compass Data

28

Revised Compass Data: binning

[Eur. Phys. J. C (2013) 73:2531]

Bin	x_{bj}^{min}	x_{bj}^{max}	$\langle x_{bj} \rangle$	Q^2_{min}	Q^2_{max}	$\langle Q^2 angle$						
1	0.0045	0.0060	0.0052	1.0	1.25	1.11	13	0.0250	0.0250 0.0350	0.0250 0.0350 0.0295	0.0250 0.0350 0.0295 1.0	0.0250 0.0350 0.0295 1.0 1.20
2	0.0060	0.0080	0.0070	1.0	1.30	1.14	14	0.0250	0.0250 0.0400	0.0250 0.0400 0.0316	0.0250 0.0400 0.0316 1.2	0.0250 0.0400 0.0316 1.2 1.50
3	0.0060	0.0080	0.0070	1.3	1.70	1.48	15	0.0250	0.0250 0.0400	0.0250 0.0400 0.0318	0.0250 0.0400 0.0318 1.5	0.0250 0.0400 0.0318 1.5 2.50
4	0.0080	0.0120	0.0099	1.0	1.50	1.22	16	0.0250	0.0250 0.0400	0.0250 0.0400 0.0319	0.0250 0.0400 0.0319 2.5	0.0250 0.0400 0.0319 2.5 3.50
5	0.0080	0.0120	0.0099	1.5	2.10	1.76	17	0.0250	0.0250 0.0400	0.0250 0.0400 0.0323	0.0250 0.0400 0.0323 3.5	0.0250 0.0400 0.0323 3.5 6.00
6	0.0120	0.0180	0.0148	1.0	1.50	1.22	18	0.0400	0.0400 0.0500	0.0400 0.0500 0.0447	0.0400 0.0500 0.0447 1.5	0.0400 0.0500 0.0447 1.5 2.50
7	0.0120	0.0180	0.0148	1.5	2.50	1.92	19	0.0400	0.0400 0.0700	0.0400 0.0700 0.0533	0.0400 0.0700 0.0533 2.5	0.0400 0.0700 0.0533 2.5 3.50
8	0.0120	0.0180	0.0150	2.5	3.50	2.90	20	0.0400	0.0400 0.0700	0.0400 0.0700 0.0536	0.0400 0.0700 0.0536 3.5	0.0400 0.0700 0.0536 3.5 6.00
9	0.0180	0.0250	0.0213	1.0	1.50	1.23	21	0.0400	0.0400 0.0700	0.0400 0.0700 0.0550	0.0400 0.0700 0.0550 6.0	0.0400 0.0700 0.0550 6.0 10.0
10	0.0180	0.0250	0.0213	1.5	2.50	1.92	22	0.0700	0.0700 0.1200	0.0700 0.1200 0.0921	0.0700 0.1200 0.0921 3.5	0.0700 0.1200 0.0921 3.5 6.00
11	0.0180	0.0250	0.0213	2.5	5.50 5.00	2.94 4.07	23	0.0700	0.0700 0.1200	0.0700 0.1200 0.0932	0.0700 0.1200 0.0932 6.0	0.0700 0.1200 0.0932 6.0 10.0

z bins	\rightarrow						
$0.2 \div 0.25$	$0.25 \div 0.3$	$0.3 \div 0.35$	$0.35 \div 0.4$	$0.4 \div 0.5$	$0.5 \div 0.6$	$0.6 \div 0.7$	$0.7 \div 0.8$

[Phys.Rev. D97 (2018) no.3, 032006]

<u></u> x	Bin limits											
	0.003	0.008	0.013	0.02	0.032	0.055	0.1	0.21	0.4			
$Q^2 (\text{GeV}/c)^2$	1.0	1.7	3.0	7.0	16	81						
Z	0.2	0.3	0.4	0.6	0.8							
$P_{\rm hT}^2 ~({\rm GeV}/c)^2$	0.02	0.04	0.06	0.08	0.10	0.12	0.14	0.17	0.196			
	0.23	0.27	0.30	0.35	0.40	0.46	0.52	0.60	0.68			
	0.76	0.87	1.00	1.12	1.24	1.38	1.52	1.68	1.85			
	2.05	2.35	2.65	3.00								

TABLE I. Bin limits for the four-dimensional binning in x, Q^2 , z and P_{hT}^2 .

Number of experimental data

Same kinematical cuts in x,Q²,z,Ph_T

Same data for DY 203

Z 90 SIDIS eN 1514

Total: 3931 data

Preliminary results

SIDIS h⁺

Include all data

SIDIS h⁺

Use 200 replica parameters from previous fit

Normalized at 1st data point of bin

Include all data

Include only COMPASS data

SIDIS h⁺

SIDIS h⁺

Normalized at 1st data point of bin

Include all data

Exploratory analysis without normalization

Use 200 replica parameters from previous fit

 $\rightarrow \chi^2/dof > 4$

Exploratory analysis without normalization

Use 200 replica parameters from previous fit

 $\rightarrow \chi^2/dof > 4$

Sensitive to z value

Less stable with regards to kinematical cuts

For the first time we demonstrated that it is possible to fit simultaneously SIDIS, DY and Z boson

We extracted a reasonable functional form for TMD from more than 8000 data points

We tested the universality and applicability of the TMD framework and it works quite well (most of the discrepancies come from normalization)

For the first time we demonstrated that it is possible to fit simultaneously SIDIS, DY and Z boson

We extracted a reasonable functional form for TMD from more than 8000 data points

We tested the universality and applicability of the TMD framework and it works quite well (most of the discrepancies come from normalization)

For the first time we demonstrated that it is possible to fit simultaneously SIDIS, DY and Z boson

We extracted a reasonable functional form for TMD from more than 8000 data points

We tested the universality and applicability of the TMD framework and it works quite well (most of the discrepancies come from normalization)

Conclusions and open issues

For the first time we demonstrated that it is possible to fit simultaneously SIDIS, DY and Z boson We extracted TMDs from more than 8000 data points

We tested the universality and applicability of the TMD framework and it works quite well

Revised Compass Data

- Reduced number of data points
- compatible with parameters obtained from

previous analysis

- removing normalization requires
- further considerations

BACKUP

TMD PDFs	N ₁	α	σ		λ	
	$[GeV^2]$				$[\mathrm{GeV}^{-2}]$	
All replicas	0.28 ± 0.06	2.95 ± 0.05	0.17 ± 0.02		0.86 ± 0.78	
Replica 105	0.285	2.98	0.173		0.39	
TMD FFs	N ₃	β	γ	δ	λ_F	N4
	$[GeV^2]$				$[\mathrm{GeV}^{-2}]$	$[{ m GeV}^2]$
All replicas	0.21 ± 0.02	1.65 ± 0.49	2.28 ± 0.46	0.14 ± 0.07	5.50 ± 1.23	0.04 ± 0.01
Replica 105	0.212	2.10	2.52	0.094	5.29	0.04

TABLE XI: 68% confidence intervals of best-fit values for parametrizations of TMDs at Q = 1 GeV.

Flavor independent scenario:

$$\begin{array}{l} N_1 \,=\, 0.28 \pm 0.06 \,\, {\rm GeV}^2 \\ \\ N_3 \,=\, 0.21 \pm 0.02 \,\, {\rm GeV}^2 \\ \\ N_4 \,\,=\, 0.04 \pm 0.01 \,\, {\rm GeV}^2 \end{array}$$

 $g_2 = 0.13 \pm 0.01 \ \mathrm{GeV}^2$

best value from 200 replicas

compatible with other extractions

Example of original data

Example of original data

Data are replicated (with Gaussian distribution)

The fit is performed on the replicated data

The procedure is repeated 200 times

For each point, a central 68% confidence interval is identified

	Framework	HERMES	COMPASS	DY	Z production	N of points
KN 2006 <u>hep-ph/0506225</u>	LO-NLL	*	×	•	•	98
Pavia 2013 (+Amsterdam, Bilbao) <u>arXiv:1309.3507</u>	No evo (QPM)		×	×	×	1538
Torino 2014 (+JLab) <u>arXiv:1312.6261</u>	No evo (QPM)	(separately)	(separately)	×	×	576 (H) 6284 (C)
DEMS 2014 <u>arXiv:1407.3311</u>	NLO-NNLL	*	×	 Image: A set of the set of the		223
EIKV 2014 <u>arXiv:1401.5078</u>	LO-NLL	1 (x,Q ²) bin	1 (x,Q ²) bin		•	500 (?)
Pavia 2017 (+ JLab)	LO-NLL	~		~	~	8059

Data selection

SIDIS proton-target data

	HERMES	HERMES	HERMES	HERMES				
	$p \to \pi^+$	$p \to \pi^-$	$p \to K^+$	$p \to K^-$				
Reference								
	$Q^2 > 1.4 \ { m GeV}^2$							
Cuts	0.2 < z < 0.7							
	$P_{hT} < Min[0.2 \ Q, 0.6 \ Qz] + 0.5 \ GeV$							
Points	188	186	187	185				
Max. Q^2	$9.2 \ { m GeV}^2$							
x range	0.06 < x < 0.4							
Notes								

Motivations behind kinematical cuts TMD factorization (Ph_T/z << Q²) Avoid target fragmentation (low z) and exclusive contributions (high z) SIDIS deuteron-target data

	HERMES	HERMES	HERMES	HERMES	COMPASS	COMPASS			
	$D \to \pi^+$	$D \to \pi^-$	$D \to K^+$	$D \to K^-$	$D \to h^+$	$D \rightarrow h^{-}$			
		$Q^2 > 1.4 \ \mathrm{GeV}^2$							
Cuts				0.2 < z < 0	.7				
			$P_{hT} < Min$	$[0.2 \ Q, 0.6 \ Q]$	$[2z] + 0.5 \mathrm{GeV}$				
Points	188	188	186	187	3024	3021			
Max. Q^2	9.2 GeV^2				$10 \ {\rm GeV}^2$				
x range		0.06 <	x < 0.4	0.006 < x < 0.12					
Notes	Observable: $\frac{m_N^h(x, z, \boldsymbol{P}_{hT}^2, Q^2)}{m_N^h(x, z, \operatorname{Min}[\boldsymbol{P}_{hT}^2], Q^2)}$								
	to avoid problems								
			with (Compass da	ita normaliza	tion			

Data selection

	E288 200	E288 300	E288 400	E605		
Cuts	$q_T < 0.2 \ Q + 0.5 \ \text{GeV}$					
Points	45	45	78	35		
\sqrt{s}	19.4 GeV	$23.8 \mathrm{GeV}$	$27.4 \mathrm{GeV}$	$38.8 \mathrm{GeV}$		
Q range	4-9 GeV	4-9 GeV	5-9, 11-14 GeV	7-9, 10.5-18 GeV		
Kin. var.	y=0.4	y = 0.21	y = 0.03	$-0.1 < x_F < 0.2$		

				CDF Run I	D0 Run I	CDF Run II	D0 Run II		
	Z production								
	data		Cuts	$q_T < 0.2 \ Q + 0.5 \ \text{GeV} = 18.7 \ \text{GeV}$					
fixed from DEMS fit, different from exp.		-	Points	31	14	37	8		
		\sqrt{s}	$1.8 \mathrm{TeV}$	$1.8 { m TeV}$	$1.96 { m ~TeV}$	$1.96 { m TeV}$			
		Normalization	1.114	0.992	1.049	1.048			
ра	arametrizations)						Γ/		

$$\tilde{f}_{1}^{a}(x,b_{T};\mu^{2}) = \sum_{i} \left(\tilde{C}_{a/i} \otimes f_{1}^{i} \right) (x,b_{*};\mu_{b}) e^{\tilde{S}(b_{*};\mu_{b},\mu)} e^{g_{K}(b_{T}) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}(x,b_{T})$$

U and **b**_{*} prescriptions

L and **b**_{*} prescriptions

L and **b**_{*} prescriptions

$$\widetilde{f}_{1}^{a}(x, b_{T}; \mu^{2}) = \sum_{i} (\widetilde{C}_{a/i} \otimes f_{1}^{i})(x, b_{*}; \mu_{b}) e^{\widetilde{S}(b_{*}; \mu_{b}, \mu)} e^{g_{K}(b_{T}) \ln \frac{\mu}{\mu_{0}}} \widehat{f}_{NP}^{a}(x, b_{T})$$

$$\mu_{b} = 2e^{-\gamma_{E}}/b_{*} \qquad b_{*} \equiv \frac{b_{T}}{\sqrt{1 + b_{T}^{2}/b_{\max}^{2}}} \qquad \text{Collins, Soper, Sterman, NPB250 (85)}$$

$$\mu_{b} = 2e^{-\gamma_{E}}/b_{*} \qquad b_{*} \equiv b_{\max} \left(1 - e^{-\frac{b_{T}^{4}}{b_{\max}^{4}}}\right)^{1/4} \qquad \text{Bacchetta, Echevarria, Mulders, Radici, Signori}$$

$$\mu_{b} = Q_{0} + q_{T} \qquad b_{*} = b_{T} \qquad \text{DEMS 2014}$$

Complex-b prescription

Laenen, Sterman, Vogelsang, PRL 84 (00)

$$\tilde{f}_{1}^{a}(x,b_{T};\mu^{2}) = \sum_{i} (\tilde{C}_{a/i} \otimes f_{1}^{i})(x,b_{*};\mu_{b}) e^{\tilde{S}(b_{*};\mu_{b},\mu)} e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}(x,b_{T})$$

Nonperturbative ingredients 1

$$\widetilde{f}_{1}^{a}(x,b_{T};\mu^{2}) = \sum_{i} (\widetilde{C}_{a/i} \otimes f_{1}^{i})(x,b_{*};\mu_{b}) e^{\widetilde{S}(b_{*};\mu_{b},\mu)} e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}} \widehat{f}_{\mathrm{NP}}^{a}(x,b_{T})$$

Nonperturbative ingredients 1

 $\log\left(Q^2 b_T^2\right) \to \log\left(Q^2 b_T^2 + 1\right)$

see, e.g., Bozzi, Catani, De Florian, Grazzini <u>hep-ph/0302104</u>

see talks by Collins, Boglione, (Rogers?)

$$\log\left(Q^2 b_T^2\right) \to \log\left(Q^2 b_T^2 + 1\right)$$

see, e.g., Bozzi, Catani, De Florian, Grazzini <u>hep-ph/0302104</u>

$$b_*(b_c(b_{\rm T})) = \sqrt{\frac{b_{\rm T}^2 + b_0^2/(C_5^2 Q^2)}{1 + b_{\rm T}^2/b_{\rm max}^2 + b_0^2/(C_5^2 Q^2 b_{\rm max}^2)}}$$

$$b_{\min} \equiv b_*(b_c(0)) = \frac{b_0}{C_5 Q} \sqrt{\frac{1}{1 + b_0^2 / (C_5^2 Q^2 b_{\max}^2)}}$$

Collins et al. arXiv:1605.00671

see talks by Collins, Boglione, (Rogers?)

 $Q^2 > 1.4 \text{ GeV}^2$ 0.2 < z < 0.7 $P_{hT}, q_T < 0.2 Q + 0.5 \text{ GeV}$

$P_{hT} < 0.8 \text{ GeV} (\text{if } z < 0.3)$

 $Q^2 > 1.4 \text{ GeV}^2$ 0.2 < z < 0.7 $P_{hT}, q_T < 0.2 Q + 0.5 \text{ GeV}$ $P_{hT} < 0.8 \text{ GeV}$ (if z < 0.3)

Total number of data points: 8156 Total χ^2 /dof = 1.45

Pavia 2016 perturbative ingredients

Mean transverse momentum

In TMD PDF

In TMD FF

Include only SIDIS data

