CCE in irradiated silicon detectors considering the avalanche effect

by <u>Vladimir Eremin,</u> Elena Verbitskaya, Andrei Zabrodskii Ioffe institute St Petersburg, Russia

> Zheng Li BNL

Jaakko Haerconen HIP

RD50 meeting, CERN, 16 - 18 Nov, 2009

Outline

- · Model
- The effect simulation
- CCE(V) profile
- CCE(F) profile
- Summary

Experimental evidence of the gain

→ 100 % CEE seen also after 3x10¹⁵ n/cm²

Signal vs. Bias Voltage

-

· highest voltage limited by breakdown

Electric field evolution with fluence in PAD detectors (single peak model)

The electric field in PAD <u>N on P</u> silicon detector

d = 300um V = 500V g = 1.7e-2 cm⁻¹

Depth profile of multiplication probability

The <u>N on P</u> detector operates at: RT The detector thickness - 300 μ m Fluence 1e16 neq/cm²

Voltage dependence of the CCE

The detector operates at RT. The detector thickness is 300um. Fluence 1e16neq/cm2 The trapping time: $|_{e} = \tau_{p} = 2.5e-10 \text{ s}$, Electron collection to the n⁺ side

Calculations are based on trivial SP detector model. What is in a real strip detector ?

V.Eremin, RD50 Nov.2009

Current stabilization and electric field smoothing around strip

The approach is based on explanation of the high breakdown voltage for the heavily irradiated P on N silicon detectors via the electric field suppression by the local current injection.

(V. Eremin et. al., "Scanning Transient Current Study of the I-V Stabilization Phenomenon in Silicon Detectors Irradiated by Fast Neutrons", NIM A, 388 (1977), 350.)

Extractions

from the "Conclusions" of the talk "The Avalanche Effect in Operation of Heavily Irradiated Si p-i-n Detectors" V. Eremin (Friburg, 2009).

1. The charge multiplication in heavily irradiated detectors is based on two fundamental mechanisms:

• the avalanche multiplication in P-N junctions

• the electric field manipulation by current injection in the deep level dopped semiconductors.

2. The SPB model conceders a "strong feed-back loop" via the current injection that explains the detector stable operation at the high voltage and the smoothed rise of the collected charge up to 100% of CCE.

PTI model and origin of Double Peak (DP) electric field distribution

V. Eremin, E. Verbitskaya, Z. Li. "The Origin of Double Peak Electric Field Distribution in Heavily Irradiated Silicon Detectors", NIM A 476 (2002) 556.

Electric field manipulation in bulk of heavily irradiated detector by hole injection

E.Verbitskaya et al., "Optimization of electric field distribution by free carriers injection" IEEE trans., NS-49 (2002), p. 258.

PTI model of electric field stabilization effect via the "Soft Avalanche Break Down"

Calculation of the Electric field with PTI model of "Soft Avalanche Break Down"

DL #	Ci-Oi		Deep donor		V-V		Deep acce	cceptor	
D/A, 0/1	0		0		1		1		
	electrons	holes	electrons	holes	electrons	holes	electrons	holes	
Et=EdI-Ev	0.36	0.76	0.48	0.64	0.7	0.42	0.595	0.525	
sig/e[cm2	1.00E-15		1.00E-15		1.00E-15		1.00E-15		
sig/h[cm2]	1.00E-15		1.00E-15		1.00E-15		1.00E-15	
Ndl[cm-3]	0.00E+00		2.00E+14		0.00E+00		5.00E+15		
Sig*Vth	1.93E-08	1.47E-08	1.93E-08	1.47E-08	1.93E-08	1.47E-08	1.93E-08	1.47E-08	
detrap.prol	8.31E-04	1.42E+04	1.76E-01	6.73E+01	3.23E+03	3.66E-03	2.98E+01	3.97E-01	

Fn = 1e16 cm-2, V = 1500, 1000, 700, 500V

Voltage dependence of the multiplication effect in detectors

Fluence dependence of the multiplication effect in detector

V = 1000V X = 0.028cm

 $\label{eq:CCD} &\sim V_{dr}{}^{*}t_{tr} = 10e7{}^{*}2.5e{}^{-}10{}^{=}25um \\ Q \ gen = 1000 \ e \ (10um \ of \ MIP \ track) \\ CCE \ mip = 30/300{}^{*}10{}^{=}1 \\ \end{tabular}$

Future

- The set of strip detectors with different width of strips will be finished in 2009.
- Irradiation spring 2010.
- CCE calculation for MIPs with PTI SABD model

Summary

- Earlier predicted phenomenon of stabilization of the maximal electric field at n+ side of heavily irradiated detectors is proofed.
- The soft CCE(V) characteristics of heavily irradiated detectors were successfully modeled.
- The PTI DP model with effective 2 midgap levels for E(X) distribution in irradiated detectors has got new confirmation.