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e Motivation of measurements and regimes
e Lifetime variations during irradiation with penetrative protons

e Simultaneous measurements of carrier recombination-diffusion and
charge extraction-collection-TCT during irradiation by 8 MeV protons
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Motivation of measurements and regimes
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The TCT in situ measurements have been performed with simultaneous registration of
the total leakage current, to control the beam induced current and an impact of the
production of radio-isotopes



Scheme of the MW-PCT instrumentation
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The transient microwave probed photoconductivity (MW-PCT) instrument for the direct
measurements_of the carrier decay transients by employing absorption are tested and
installed. VUTEG-3HE, master PC-NB, antenna/excitation fiber modules éJosmonm and visual
control modules are installed within irradiation chamber at accelerator Iaboratory, Delivering of
signals to destination outside running irradiation area are implemented by using LAN. The sample

holder with electrodes and wiring system are installed for simultaneous charge collection- TCT
measurements within chamber during irradiations.



Lifetime variations during irradiation:
measured in wafer samples by MW-PCT at cross-sectional excitation without applied E field
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At low fluence the protons irradiation influence on the lifetime is superlinear, it can be roughly
approximated as a quadratic dependence, but this dependence in the pre-irradiated sample
can be approximated as a square root on the fluence. This dependence can be understood as
dependent on the defect generation and their modification. Pre-irradiation create new
radiation centers and further irradiation induce the modification of centers.

The square root dependence on irradiation proposes the linear dependence of recombination
efficiency on the average distance between the radiation induced centers. At higher fluencies
the generation and modification of defects reach the equilibrium and the linear dependence of
recombination efficiency was observed.



Lifetime variations during irradiation:

Also, it is possible to model this dependence by
proposal of the vacancies migration to form the
different clusters.

Comparison of the variations experimental (symbols) of the inverse
recombination lifetime during irradiation: by 6 MeV protons at 280K of
the pre-irradiated material, and by 8 MeV protons at 53 K and 280K
temperatures of the initial MCZ Si and the simulated (lines)
characteristics by using a modified polynomial model presented by Eq.:
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Here, c; is carrier thermal velocity, o,,(®)=c,,@* fcross-section of
carrier capture at defects aggregated of m primary defects, Bm
=0,,0@,"is initial (0) value of accumulated @ for cregtion of a definite
type of recombination centers, and B,,;is a threshold|value of B,, for a
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F -'- 'f;f"'"l T T T T
2| 3 1
10 E @ o~ const
: A
L {90 e @O @,
10'F \
— b ] ®
n ; &7
2 o \. f/oi D> @,
10°F MCZ Si wafer b /
ot t 8 MeV protons at 285K : ] (s
o[ o freddnA ] e o
¢ varying current by steps ® ¢/ o
i P> P> @,
10°f e o @---5__7 R
PR | MR | PR | PR | P O \
) -1 0 1 2
10 10 10° 10 10 ool e O Oy,
Exposure time under irradiation by protons (s) 0 e 9/
AN

103 { B ,/_:,},.2:;’:.':;(,{; ‘
102 A4
T gl MCZ Si

é§0 K, pre-rradiate: 8 MeV protons at:

p E experiment and simulation

107 F sk © 53K 2nA,

T A 280K 4nA,
1021 6 MeV, pre-irradiated 10" p/cm®

Lg * 1.5nA 280K,

L 280K
10° P T 3

10 10 10 10

Exposure time under irradiation by protons (s)

The non-linear lifetime reduction rates can be
phenomenologically described by accepting a
simultaneous change of the concentration of definite
defects and of the cross-section dependent on
fluence. The latter could be even associated with
geometrical cross-section when, for instance, several
vacancies join into nanometric pore.

However, growth of such defects would be dependent
on stability of such multivacancy aggregates, e.g. V,,
and on the instantaneous density of primary defects
able to agglomerate. Therefore, aggregation of the
extended defects should exhibit a saturation effect at
every accumulated fluence. These assumptions can
be accepted if simultaneous increase of primary
defects in density



Lifetime variations during irradiation:

alternatively, lifetime variations can be explained by the inside surface recombination on extended defects
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TCT before, during and after irradiation by 8 MeV protons

Control of the beam current changing within irradiation

Simultaneous measurements of TCT and of total leakage current
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It is difficult to follow reliably an evolution of defects during irradiation by measurements of the
TCT amplitude while shape and duration of a TCT pulse are nearly invariable at fixed U,=150 V



Carrier recombination-diffusion and charge extraction-collection-TCT in the non-irradiated diodes
Pure TCT = Iy 1ot

Transient in semilog scale

Transient in linear scale

TCT +CnC— (1 1 '2)Ie><-TCT

/ .\ MCZ n-type diode
3 U.=60V, »_=531nm
1 MCZ n-type diod¥ ol "
1 yp I A \ Mot .
. ¢ nex2
,,,,,,,,, / \ Mo
E ‘ E - nex
; ,,,,,,,,,,,,,,,, 'I \ nex1<nexzinex3<nex4

. 3 MCZ n-type diode
h U,=60V, 1_=531nm
\\ 3 nex‘
. nex2
nex3
R nexA
e nexS
""""" Nexe
. 3 Ny
Drift-TCT Mt MmN
Charge diffusion-extraction/ collection o,

t(ns
Carrier drift (TCT), diffusion (ChE/C) and recombination components in the initial non-irradiated M &Z> n-Si detectors as a function
of voltage at fixed excitation density (left) and of excitation density (right) at fixed voltage. Recombination is significantly longer.



Model and simulations Drift . y=Cu oS zes,Ljod?
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Model and simulations

TCT +charge-extraction (Ch-E) regime
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TCT- ChE/C amplitude (a.u.)

Simultaneous measurements of carrier recombination-diffusion and
TCT-charge extraction/collection during irradiation by 8 MeV protons
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Summary

« Examined MW-Photoconductivity transient (PCT) exposure characteristics show
defect evolution aspects in different scales: most probable processes are related to the
lattice excitation and recombination induced migration of defects.

eThe polynomial approximation would feature a formation rate for definite type of
single defects averaged over densities of various species, while the inside surface
recombination approach would show excess carrier decay rate in the crystal when bulk
averaged distances of their free motion are shortened with enhancement of particle
tracks density.

The latter approximation fits well the lifetime variations during exposure of stopped 3 MeV protons, when only linear and
square terms are adjusted in the polynomial model. Formation and competition of the point and the extended defects, which
dimensions (geometrical cross-sections of clusters) are limited by a damage area and a defect stability reason, can be
observed only in the limited range of exposures under irradiation by stopped 3 MeV protons.

e Simultaneous measurements of the MW-PCT and Charge extraction transient
/Collection exposure characteristics during irradiation by 8 MeV protons enable one to
follow fluence dependent changes of carrier recombination — diffusion parameters.
However, it is difficult to follow reliably an evolution of defects during irradiation by
measurements of the TCT amplitude while shape and duration of a TCT pulse are
nearly invariable at fixed Ur.

e Charge extraction transient shortens to TCT during exposure, while MW-PCT shows
continued recombination lifetime reduction with enhancement of fluence
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