Joint Laboratory for Characterisation of Defect Centres in Semi-Insulating Materials # High-resolution photoinduced transient spectroscopy of defect centres in epitaxial silicon irradiated with high proton fluences Paweł Kamiński ¹, Roman Kozłowski ¹, Jarosław Żelazko ¹, and Eckhart Fretwurst ² ¹ Institute of Electronic Materials Technology, ² Institute of Experimental Physics, Hamburg University #### **Outline** - Samples pad detectors with active layer of epitaxial silicon irradiated with 24 GeV/c protons; after removing p⁺ layer planar ohmic contacts made on the surface of n-type epilayer - Details of HRPITS measurements - HRPITS images of spectral fringes for radiation defects in standard and oxygenated epitaxial layers – effect of increasing the proton fluence from 1.0x10¹⁶ to 1.7x10¹⁶cm⁻² on the properties and concentrations of defect centers in the as-irradiated and annealed material - Changes in the concentrations of selected defect centers with increasing annealing temperature from 80 to 240 °C - Conclusions ### **Samples** Epitaxial detectors fabricated by CiS, Erfurt (Germany) Process: 261636-13 CiS standard (label - ST) Process: 261636-9 CiS oxygenated (label – DO) - Active epitaxial layers ITME Si epi., <100>, *n*-type, 500 Ωcm, 150 μm - 24 GeV/c proton irradiation, CERN PS source Fluences: 1.x10¹⁶ and 1.7x10¹⁶ cm⁻² ### **Details of HRPITS measurements** - Temperature range: 30 300 K, ∆T = 2 K - Excitation source: 5 mW, 650 nm laser diode (hv = 1.908 eV) - Excitation pulse parameters: Period 250 ms, Width 50 ms - Photon flux: 1.3x10¹⁷ cm⁻²s⁻¹ - BIAS: 20 V - Gain: 1x10⁶ 1x10⁷ V/A - AVG: 250 waveforms - Analysis of photocurrent relaxation waveforms: - 2D correlation procedure (multi-window approach) → images of correlation spectral fringes for radiation defect centres - 2D inverse Laplace transformation algorithm → images of Laplace fringes for radiation defect centres ### ST epilayer, as-irradiated, fluence **1x10**¹⁶ cm⁻² Tentative identification of detected defect centers Parameters of defect centers obtained from the HRPITS studies for ST Si epi 150 μ m asirradiated with proton fluence of $1.0x10^{16}$ cm⁻². | Trap label | E_a^* (meV) | $A^* (K^{-2}s^{-1})$ | Concentration (cm ⁻³) | Tentative identification | |------------|---------------|----------------------|-----------------------------------|---| | TA1 | 30±5 | $3.2x10^4$ | $2.0x10^{15}$ | shallow donors | | TA2 | 65±5 | $1.9 \text{x} 10^5$ | 3.8×10^{15} | shallow donors | | TB1 | 73±5 | $3.6 \text{x} 10^4$ | $4.9x10^{15}$ | I aggregates (I ₃) | | TA3 | 109±5 | 1.2×10^5 | 7.6×10^{15} | I aggregates (I ₄) | | TA4 | 170±5 | $1.0 \text{x} 10^6$ | $1.2x10^{16}$ | VO (-/0) | | TS11 | 226±10 | 7.5×10^6 | 1.6×10^{16} | V ₂ O (2-/-) | | T9 | 255±10 | 2.6×10^6 | $2.7x10^{16}$ | IO_2 | | TC3 | 260±10 | $4.7x10^5$ | 3.2×10^{16} | V ₂ (2-/-) | | TS4 | 298±10 | 1.5×10^6 | $3.7x10^{16}$ | V_xO_y complexes (V_3O , $V_4O_2 \dots$) | | T10 | 315±10 | 2.5×10^5 | 4.7x10 ¹⁶ | V_xO_y complexes (V_3O , V_4O_2) | | TA5 | 325±10 | 1.4×10^6 | 3.9×10^{16} | V_xO_y complexes (V_3O , $V_4O_2 \dots$) | | TS6 | 410±15 | $1.0 \text{x} 10^7$ | $5.2x10^{16}$ | I_2O | | TA6 | 420±15 | $4.4x10^6$ | $4.0x10^{16}$ | V ₂ (-/0) | | *F 14 11 | 493±20 | $4.0x10^7$ | 2.4x10 ¹⁶ | complex of O with V aggregates (V ₄ , V ₅) | ^{*} E_a and A - the activation energy and pre-exponential factor in the Arrhenius formula $e_T = AT^2 exp(-E_{a'}kT)$ ### ST epilayer, as-irradiated, fluence **1.7x10**¹⁶ cm⁻² Tentative identification of detected defect centers Parameters of defect centers obtained from the HRPITS studies for ST Si epi 150 μm asirradiated with proton fluence of $1.7x10^{16}$ cm⁻². | intediated with proton freenee of 1.7x10 cm. | | | | | | |--|---------------|----------------------|-----------------------------------|---|--| | Trap label | E_a^* (meV) | $A^* (K^{-2}s^{-1})$ | Concentration (cm ⁻³) | Tentative identification | | | TS7 | 20±5 | $1.3x10^4$ | 1.1×10^{15} | shallow donors | | | TS8 | 30±5 | 3.8×10^3 | 3.0×10^{15} | shallow donors | | | TS9 | 90±5 | $4.4x10^4$ | 6.9×10^{15} | I aggregates (I ₃) | | | TS10 | 95±5 | 2.9×10^5 | 1.1×10^{16} | I aggregates (I ₄) in disordered vicinity | | | TA4 | 190±10 | $2.3x10^6$ | $1.2x10^{16}$ | VO (-/0) | | | T7 | 210±10 | 4.0×10^5 | 1.5×10^{16} | $V_2(+/0)$ | | | TS5 | 270±10 | 1.8×10^6 | 2.6×10^{16} | IO_2 | | | TS4 | 300±10 | 1.5×10^6 | $3.9x10^{16}$ | V_xO_y complexes (V_3O , V_4O_2) | | | T10 | 315±10 | 2.5×10^5 | 5.8x10 ¹⁶ | V_xO_y complexes (V_3O , V_4O_2) | | | TA5 | 325±10 | 1.4×10^6 | $5.0 \text{x} 10^{16}$ | V_xO_y complexes (V_3O , V_4O_2) | | | TS6 | 400±10 | 6.1×10^6 | 1.8×10^{16} | I_2O | | | TA6 | 410±15 | 2.5×10^6 | 1.3×10^{16} | V ₂ (-/0) | | | TA8 | 480±10 | 1.3×10^7 | 1.5x10 ¹⁶ | complex of O with V aggregates (V ₄ , V ₅) | | E_a and A – the activation energy and pre-exponential factor in the Arrhenius formula $e_T = AT^2 exp(-E_a/kT)$ #### ST epilayer, as-irradiated Changes in the radiation defect centers concentrations with increasing the proton fluence from **1.0x10**¹⁶ to **1.7x10**¹⁶ cm⁻² ## Defect structure of DO Si-epitaxial layer after irradiation with a fluence of 1x10¹⁶ cm⁻² ### DO epilayer, as-irradiated, fluence **1x10**¹⁶ cm⁻² Tentative identification of detected defect centers Parameters of defect centers obtained from the HRPITS studies for DO Si epi 150 μ m asirradiated with proton fluence of $1.0x10^{16}$ cm⁻². | Trap label | E_a^* (meV) | $A^* (K^{-2}s^{-1})$ | Concentration (cm ⁻³) | Tentative identification | |------------|---------------|----------------------|-----------------------------------|---| | TA1 | 30±5 | $3.2x10^4$ | 1.8×10^{15} | shallow donors | | TC1 | 35±5 | $1.0x10^4$ | 1.5×10^{15} | shallow donors | | TC2 | 95±5 | 2.8×10^5 | 2.5×10^{16} | I aggregates (I ₃) | | TA4 | 190±5 | 2.4×10^6 | 9.1×10^{15} | VO (-/0) | | T7 | 210±5 | $4.0x10^5$ | $1.3x10^{16}$ | V ₂ (+/0) | | TC3 | 260±10 | $4.7x10^5$ | 2.5×10^{16} | V ₂ (2-/-) | | T10 | 315±10 | 2.8×10^5 | 3.2×10^{16} | V_xO_y complexes (V_3O , V_4O_2) | | TA5 | 325±10 | 1.4×10^6 | 2.6×10^{16} | V_xO_y complexes (V_3O , V_4O_2) | | TA6 | 410±10 | 2.5×10^6 | $4.9x10^{16}$ | V ₂ (-/0) | | TA7 | 460±10 | $1.6 \text{x} 10^6$ | $1.0 \text{x} 10^{16}$ | V_4, V_5 | | TA8 | 480±10 | $1.3x10^7$ | $3.2x10^{16}$ | complex of O with V aggregates (V ₄ , V ₅) | ^{*} E_a and A - the activation energy and pre-exponential factor in the Arrhenius formula $e_T = AT^2 exp(-E_a/kT)$ ### DO epilayer, as-irradiated, fluence **1.7x10**¹⁶ cm⁻² Tentative identification of detected defect centers Parameters of defect centers obtained from the HRPITS studies for DO Si epi 150 μ m asirradiated with proton fluence of $1.7x10^{16}$ cm⁻². | indicated with proton fidence of 1,7710 cm. | | | | | |---|---------------|----------------------|-----------------------------------|--------------------------------| | Trap label | E_a^* (meV) | $A^* (K^{-2}s^{-1})$ | Concentration (cm ⁻³) | Tentative identification | | TC1 | 30±5 | $1.1x10^4$ | 2.3×10^{15} | shallow donors – STD (H) | | TC2 | 95±5 | $2.7x10^5$ | $2.0 \text{x} 10^{16}$ | I aggregates (I ₃) | | TA4 | 190±5 | 2.4×10^6 | 1.3×10^{16} | VO (-/0) | | T7 | 210±5 | $4.0x10^5$ | 1.6×10^{16} | V ₂ (+/0) | | TC3 | 260±10 | $4.7x10^5$ | 2.8×10^{16} | V ₂ (2-/-) | | T10 | 315±10 | 2.8×10^5 | $4.5 \text{x} 10^{16}$ | V_xO_y complexes (V_3O , | | | | | | V_4O_2 | | TA5 | 325±10 | $1.4 \text{x} 10^6$ | $3.3x10^{16}$ | V_xO_y complexes (V_3O , | | | | | | V_4O_2 | | TA6 | 410±10 | 2.5×10^6 | 5.5×10^{16} | $V_2(-0)$ | | TA7 | 460±10 | $1.6 \text{x} 10^6$ | 3.2×10^{14} | V_4, V_5 | | TA8 | 480±10 | $1.3x10^7$ | $3.5 \text{x} 10^{16}$ | complex of O with V | | | | | | aggregates (V_4, V_5) | ^{*} E_a and A - the activation energy and pre-exponential factor in the Arrhenius formula $e_T = AT^2 exp(-E_a/kT)$ #### DO epilayers, as-irradiated Changes in the radiation defect centers concentrations with increasing the proton fluence from **1.0x10**¹⁶ to **1.7x10**¹⁶ cm⁻² #### ST and DO epilayers Changes in the concentrations of radiation defect centers with increasing the annealing temperature ### **Conclusions (1)** - High-resolution photoinduced transient spectroscopy (HRPITS) has been used to imaging defect structure of *n*-type epitaxial layers being the active layers of pad detectors irradiated with 24 GeV/c protons. The effect of increasing fluence from 1.0x10¹⁶ cm⁻² to 1.7x10¹⁶ cm⁻² on parameters and concentrations of radiation defect centers has been studied. - In standard epitaxial layers irradiated with the lower proton fluence, the activation energy of the predominant defect center was found to be 410 meV. This center, the concentration of which was 5.2x10¹⁶ cm⁻³, is presumably related to I₂O complex. The concentrations of the other radiation centers with activation energies 255, 260, 300, 315, 325, 420, and 480 eV ranged from 2.4x10¹⁶ to 4.7x10¹⁶ cm⁻³. - In standard epitaxial layers irradiated with the higher proton fluence, the activation energy of the predominant defect center was found to be 315 meV. This center, whose concentration was 5.8x10¹⁶ cm⁻³, is tentatively assigned to a V_xO_y complex. The concentrations of the other radiation centers with activation energies 270, 300, and 325 eV, ranged from 2.6x10¹⁶ to 5.0x10¹⁶ cm⁻³. ### **Conclusions (2)** - In oxygenated epitaxial layers with the lower proton fluence, the activation energy of the predominant defect center was found to be 420 meV. This center, the concentration of which was 4.9x10¹⁶ cm⁻³, is presumably related to a divacancy V₂-/0. The concentrations of the other radiation centers with activation energies 260, 315, 325, and 480 eV, ranged from 2.5x10¹⁶ to 3.2x10¹⁶ cm⁻³. - In oxygenated epitaxial layers with the higher proton fluence, the activation energy of the predominant defect center was found to be 420 meV. This center, the concentration of which was 5.5x10¹⁶ cm⁻³, is presumably related to a divacancy V₂-/0. The concentrations of the other radiation centers with activation energies 260, 315, 325, and 480 eV, ranged from 2.8x10¹⁶ to 4.5x10¹⁶ cm⁻³. - It was found that after 1-h annealing at 240 °C the activation energy of the predominant defect center is 575 meV. In the standard epitaxial layers irradiated with proton fluences 1.0x10¹⁶ cm⁻³ and 1.7x10¹⁶ cm⁻² the concentrations of this center after the annealing were 9.2x10¹⁶ and 8.0x10¹⁶ cm⁻³, respectively. - In the oxygenated epitaxial layers irradiated with proton fluences 1.0x10¹⁶ cm⁻³ and 1.7x10¹⁶ cm⁻², the concentrations of the predominant 575-meV center after the annealing were 5.4x10¹⁶ and 7.0x10¹⁶ cm⁻³, respectively. ### **Acknowledgement** - We would like to thank Michael Moll for performing the proton irradiations. - This work was carried out within the framework of the RD 50 project with financial support of the Polish Ministry of Science and Higher Education under grant No. CERN/15/2007.