

Effects of annealing on charge collection in heavily irradiated silicon micro-strip detectors

G. Kramberger, V. Cindro, I. Mandić, M. Mikuž, M. Milovanović, M. Zavrtanik

Motivation

- Long-term annealing does not seem to be as harmful as at lower fluencies (*measured by Liverpool, UCSC, IJS*)
- New method used to investigate CCE Edge-TCT (*see previous talk*)
- Multiplication effects could be influenced by
 - τ_{eff} changes

 Electric field changes.
 Forward bias?

Experimental Setup

Detector:

O Manufacturer: Micron (RD50 Micron run)

- Type: FZ Si, p-type micro-strip, initial V_{FD}≈16V
- Irradiation fluence: 5x10¹⁵ neutrons/cm² (by TRIGA)

Setup (see Gregor's talk)

- Peltier cooler (-20 ÷ 60 °C)
- O Power supply: Keithley 2410
- Wide band amplifier: MITEQ AM-1309 (10kHz-1Ghz)
- Osciloscope: LeCroy 950 WavePro (1Ghz)
- \bigcirc IR Laser: ALDS, λ =1060nm
- OPositioning system: Newport M-ILS100PP

Experimental Setup

Annealing process

- Sample always annealed in the setup with the Peltier element
 - charge measurement (estimation of precision: a few percent)
 - constant laboratory temperature: 21 °C
 - stable position/laser (the same locations in the detector were illuminated for all annealing steps)
 - sample temperature stabilized to less than 1°C
- Annealing at 60°C up to cumulative time of 10240 min.
- After each annealing step, voltage scans from -800V up to 500V were performed

Charge collection @-800V (reverse bias)

Detector: Micron, FZ-Si p-type micro-strip, Φ=5x10¹⁵ cm⁻², T=-20°C

How can we be sure that this is not an artifact of the setup?!

a) Laser stability can be verified in forward bias

What can we see in forward direction?

Annealing process

- does not seem to influence charge collection efficiency
- The efficiency of the detector is best at its centre
- There is no peak in the electric field!

<Q> vs. bias for all annealing times (MIP equivalent Q vs. bias)

Detector: Micron, FZ-Si p-type micro-strip, Φ=5x10¹⁵ cm⁻², T=-20°C

<Q> [arb.] vs. bias, t_{ann} = 80 ÷ 10240min.

Detector: Micron, FZ-Si p-type micro-strip, Φ=5x10¹⁵ cm⁻², T=-20°C

E-TCT Measurements (reverse bias, up to: 800V)

Detector: Micron, FZ-Si p-type micro-strip, Φ=5x10¹⁵ cm⁻², T=-20°C

I_{leak} vs. <Q> for all annealing times

Detector: Micron, FZ-Si p-type micro-strip, Φ=5x10¹⁵ cm⁻², T=-20°C

Conclusion

 Charge collection efficiency increases with longterm annealing for highly irradiated (Φ≥5x10¹⁵cm⁻²) micro-strip detectors when reversely biased.

No effect of annealing in forward bias

- Changes in charge collection due to enhanced multiplication effects induced by reduced trapping time and increased electric field during annealing
- Increase in I_{leak} correlated with <Q>