Charge Multiplication Properties in Highly Irradiated Thin Epitaxial Silicon Diodes

> Jörn Lange, Julian Becker, Eckhart Fretwurst, Robert Klanner, Gunnar Lindström

Hamburg University

15th RD50 Workshop, CERN, November 2009

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Introduction

- Trapping: most limiting factor at S-LHC fluences
 ⇒ Degradation of Charge Collection Efficiency (CCE)
- But at high fluences and voltages: CCE>1
 ⇒ Trapping overcompensated by Charge Multiplication (CM)
- Can CM be used for highly damaged S-LHC detectors?
 ⇒ Detailed understanding of the formation and properties of CM in irradiated sensors needed
- Questions to be answered:
 - 1) Where is the CM region located?
 - 2) Is the measured charge proportional to the deposited one?
 - 3) Do fluctuations of the CM process affect the charge spectrum or the noise?
 - 4) Is CM homogeneous over the detector area?
 - 5) Is the operation of a detector in the CM regime stable in time?
 - 6) ... (position resolution etc.)

Investigated Diode and Method

- Material: Epitaxial Si pad-detectors on Cz-substrate produced by ITME/CiS
- Here: focus on sample with the most extreme multiplication values: 8364-03-50 \rightarrow highest available fluence, smallest thickness
 - n-EPI-ST 75 μm
 - $[O] = 9x10^{16} \text{ cm}^{-3}$, $N_{eff,0} = 2.6x10^{13} \text{ cm}^{-3}$, <111> orientation
 - 5 x 5mm²
 - $\Phi_{eq} = 10^{16} \text{ cm}^{-2}$ (24 GeV/c protons, CERN PS)
 - 30 min at 80°C annealing

- Method: Transient Current Technique (TCT)
 - No time-resolved pulses for 75 μ m \Rightarrow only integral of current pulse (i.e. collected charge Q) evaluated
 - Charge collection efficiency obtained by normalising Q wrt. unirradiated diode: $CCE = \frac{Q}{Q_0}$
 - Measured at -10°C to reduce leakage current, nitrogen atmosphere
 - Different TCT setups with different properties:
 - 5.8 MeV α-particles with different polyethylene (PE) absorber layers between source and diode
 - 670, 830, 1060 nm laser light (new ALS lasers \rightarrow improved stability/CCE precision)
 - MTCT setup with 660nm laser: x-y-scan, (time-resolved measurements in 150 μm EPI diodes)

CCE for Different Sources with Different Penetration

 \Rightarrow CM region located at the front side

Charge Multiplication due to Impact Ionisation

Impact ionisation

Described by ionisation coefficient $\alpha(E)$:

 $dN = N \alpha(E) dx$

Simplified model for n-EPI ST 75µm, 10¹⁶cm⁻²:

- Linear field with extrapolated U_{dep}
- No trapping

Proportionality of Measured Charge

Linear (almost proportional) ⇒ proportional mode not Geiger mode

Single TCT Pulses with and without Charge Multiplication

- Results before obtained by averaging 512 signals to reduce noise
- What about single TCT pulses – event by event?
- 300 single TCT pulses taken
 - α-particles: self-triggered
 - Laser: external trigger (50 Hz)

Micro discharges

- can occur randomly at high voltages
- can fake a signal above the trigger threshold (if self-triggered)
- but: also in unirradiated diodes at high voltages
- \Rightarrow improve Si technology

Charge Spectrum and Baseline Noise with and without Charge Multiplication

Normalised width of charge spectrum:

- increases for α-particles
- almost constant for laser light (670, 830, 1060nm)
- \Rightarrow fluctuations in CM process not dominant
- $\Rightarrow \alpha \text{-particles: fluctuations in fraction} \\ \text{of charge deposited in CM region?}$
- \Rightarrow what about MIPs?

TCT baseline noise

- only slight increase in absence of micro discharges despite high I_{rev} increase
- but here: TCT setup
- \Rightarrow what about low noise charge readout?

Spatial Homogeneity: x-y-scan

茁

Long-Term Stability

UHI L

Summary and Outlook

- Properties of Charge Multiplication in highly irradiated EPI diodes:
 - Thin CM region at the front side
 - Proportional mode
 - Normalised width of charge spectrum constant (laser)
 → no significant fluctuations in CM process
 - Only slight noise increase (TCT)
 - Homogeneous over the detector area
 - Stable in time
- Open issues:
 - Large broadening of charge spectrum in case of α -particles \rightarrow what about MIPs?
 - What about noise in case of charge readout?
 - Biggest challenge for diodes used here: Can micro discharges at high voltages be reduced and controlled?
 - Possible effects on position resolution \rightarrow segmented sensors

Using charge multiplication to overcome trapping in highly irradiated detectors looks promising

BACKUP SLIDES

Depletion Voltage (from CV at 10 kHz)

Stable Damage:

17 November 2009, 15th RD50 Workshop, CERN

MTCT Laser-TCT Setup

Laser -TCT Setup

Alpha-TCT Setup

Detector Mounting

 α -TCT Setup

