

ATLAS Insertable B-Layer (IBL)

H. Pernegger / CERN

The present ATLAS Pixel Detector

50x400 um² pixels
 spatial resolution:

 10 um in R-f, 115 um in z
 radiation hardness
 Specs 500kGy ; tested to >1000kGy and 2e15 n_{eq}

1744 separate pixel modules
80 mio. readout channels
3 track points down to |η|=2.5

H. Pernegger / CERN

RD50 workshop

The 4th Pixel Layer: Insertable B-Layer

- Add a 4th low-mass pixel Layer inside the present B-Layer: The Insertable B-Layer
 - Improve performance of existing system + maintain performance when present B-Layer degrades.
 - Existing Pixel detector stays installed and a 4th layer is inserted inside the existing pixel detector together with new beam pipe. (Requires new, smaller radius beam pipe to make space)
 - It needs to be replaced in a 8-months shutdown (~2014/15)
- It serves also as a "technology step" from now to sLHC
 - The IBL project will be the first to use much of the **new technologies** currently under development **for sLHC**
 - Radiation hardness ~5 x $10^{15} n_{eq}/cm^2$
 - Frontend IC4: go to IBM 130nm process and improve readout architecture
 - Sensors: investigate 3D silicon sensors, new planar sensors and CVD diamond
 - Readout system & optolink: 160MB/s for data
 - Cooling system & Mechanics: develop light-weight support

IBL Simulation

- Simulation for IBL implemented in present ID
 - Simulated different layouts (sensors facing beam pipe, sensors facing present B-layer,...)
 - Simulation includes standard digitization, PR and track reconstruction
 - Added in simulation Layout description, material map

IBL implementation in 15.4.0 release

Pixel disks and beam pipe are removed to show IBL

H. Pernegger / CERN

RD50 workshop

IBL Performance

- IP res Z: 100μm->~60μm
- IP res RΦ : 10µm -> 7µm
- B-tagging: Light Jet rejection factor improves by factor ~2
- To maintain Pixel Detector performance with inserted layer, material budget is critical.

Component	% X ₀
beam-pipe	0.6
IBL @ R=3.2 cm	~1.5
Old BL @ R=5 cm	2.7
L1 @ R=8 cm	2.7
L2 + Serv. @ R=12 cm	3.5
Total	11.0

H. Pernegger / CERN

RD50 workshop

IBL Layout

- Converging towards "reverse turbine" layout with 14 staves as baseline layout for engineering studies and TDR:
- Work on others continues at slower pace
- 14 staves layout parameters
 - 🤹 🛛 IR 32mm
 - OR (structure) 38.35mm
 - Sensor Radius 33.25mm
 - Sensor Tilt Angle 14 degrees
 - Nominal Internal Clearance ~1.47mm
- Proposed tolerances for the stave assembly
 - Geometry tolerance (+/- 0.1mm)
 - Assembly tolerance (+/- 0.15mm)
 - Total tolerance range ½ mm

Requirements for Sensors/Electronics

- Requirements for IBL (sensors/electronics)
 - IBL design Peak Luminosity = $3 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} \rightarrow \text{New FE-I4}$, higher hit rate
 - Integrated Luminosity seen by IBL = 550 fb⁻¹
 - Total NIEL dose (r_{min} =3.1cm): Φ_{1MeV} = 3.1 x 10¹⁵ ± 30% (σ_{pp}) ± 50% (sensor damage factor)
- Safety factor for IBL (60%) \rightarrow design for 5 x 10¹⁵ n_{eq}/cm² \rightarrow more rad-hard sensors
 - Total ionization dose (TID) > 200 Mrad
- ATLAS Pixel Sensor/FE-I3 designed for $10^{15} n_{eq}/cm^2/50$ Mrad

Planar Sensors – Slim Edge

- Planar sensor prototyping for IBL
 - Large numbers of new results with strips and diodes (RD50) promise enough CCE for IBL
- Parameter optimization under study what the best trade-off for IBL parameters?
 - Detector bias
 - Present pixel V_{bias}=600V, looking at implication of higher V_{bias} (1000÷1500V)
 - Optimize guard ring (geometrical inefficiency in Z) for slim edge
 - 300÷500 μm look feasible
 - Reduce thickness: more charge collected for given V_{bias}, lower bulk current
 - 250 is the standard, 200÷220 µm looks feasible, 140µm would be attractive

3D Sensors - Test Beam

- Jun.09 test beam: 1 ATLAS Pixel planar, 1 3D SINTEF/Stanford (full column), 2 FBK partial double columns (FBK 3EM5 has low breakdown @ 10V)
 - For inclined tracks 3D sensors have similar efficiency and spatial resolution as planar – No Lorentz angle effect in 3D sensor
 - Active edge (STA) show efficiency up to 5÷10µm from edge
- Very good collaboration between 3D sensor producers:
 - Two meetings (Jun'09, Sep'09)

Ref.: O. Rohne – Vertex 2009

	Hit efficiency (%)			RMS (μm)				
	B = 0.0 T		B = 0.0 T			B = 1.4 T		
	$\Phi = 0^{\circ}$	$\phi = 15^{\circ}$	φ =	= 0°	$\phi = 15^{\circ}$	$\Phi = 0^{\circ}$	$\phi = 15^{\circ}$	
Planar	99.9	99.9	1	3.8	9.7	10.2	10.4	
STA 3E	96.7	99.8	14	4.3	10.8	13.9	9.8	
FBK 3E7	99.0	99.8	14.0		10.4	13.5	9.7	
FBK 3EM5	90.2	97.7	1	5.4	11.9	14.8	11.3	

H. Pernegger / CERN

RD50 workshop

Diamond

- Small capacitance \rightarrow low noise (140e vs 180e of planar); possible lower threshold operation (1500e)
- Operation with no cooling: no leakage current
- Three full-size modules built, more prototypes in 2010, >14 FEI4 modules planned for next year

H. Pernegger / CERN

RD50 workshop

IBL Sensor & Module

- Bring the 3 detector technologies together for 2010 IBL module qualification program: Planar, 3D, CVD diamonds
 - Proposal is to construct 40 IBL qualification modules with each sensor technology to test FEI4 and sensor (lab, testbeam, irradiation)

Sensors

Planar sensors

- Sensor parameters (previous slide) considered ok for planar sensors (annealed) up to 5 x 10¹⁵ neq/cm²
- Currently look at different layouts for IBL (final 2-chip module)
 - "conservative" n-in-n with $\sim 500 \mu m$ guard ring area
 - More "advanced" n-in-n with slim edge (~100µm) or thin (~150µm) sensors (n-in-n and n-in-p)
- FEI4-compatible sensors in production at different vendors (CIS, Micron)

• 3D sensors

- Prefer full 3D active edge sensors for IBL (as single chip modules) (2E on 50x250μm)
- 2010 prototyping runs of full 3D active edge at Sintef/Stanford, CNM, FBK
- Additional double sided 3D with slim edge at CNM and FBK
- Study "charge multiplication" at higher voltages (~250V)

Diamonds

- Have assembled 3 full size (16chip FEI3) modules and study in testbeam
- Plan to prototype 11 FEI4-single chip and 3 FEI4-double modules next year
 - Sensors for that available and/or on order
- Present vendor DDL and investigate new vendor "II-VI" (US)

H. Pernegger / CERN

RD50 workshop

New Pixel Front-End Chip: FEI4

- Reasons for a new FE design:
 - Increased radiation hardness
 - New architecture to reduce inefficiencies (*L*=3xLHC)
- New FE-I4
 - Pixel size = $250 \times 50 \ \mu m^2$
 - Pixels = 80 x 336
 - Technology = 0.13 μ m
 - Power = 0.5 W/cm² (max) , 0.25 W/cm² (nominal)
- FE-I4 Design
 - Contribution from 5 laboratories: Bonn, CPPM, INFN Genova, LBNL, Nikhef

	FE-I3	FE-I4
Pixel Size [µm²]	50×400	50×250
Pixel Array	18×160	80×336
Chip Size [mm²]	7.6×10.8	20.2×19.0
Active Fraction	74%	89%
Analog Current [µA/pix]	26	10
Digital Current [µA/pix]	17	10
Analog Voltage [V]	1.6	1.5
Digital Voltage [V]	2	1.2
pseudo-LVDS out [Mb/s]	40	160

FEI4 Chip Status

- Review Nov 3-4
 - http://indico.cern.ch/conferenceDisplay.py?confld=72160
- Status of internal blocks
 - All are designed and most have final or near final layouts
 - Total of 24 circuit blocks produced by 14 designer:
 - Approximately 100M transistors
- Status of integration
 - Complete pixel array done and partially verified + Schematics for full chip advanced but not yet complete
 - Simulation from full chip schematics started
 - test setup development for wafers and single chip modules progressing, incl. FEI4 emulator
 - Dec:new design kit include "T3" substrate isolation (analog & digital ground separation) - Re-verify entire chip with new design kit

- Present timeline:
- Submission ~ Feb
- Wafers back May

Bump bonding of thin large chips

- "old style" bump bonding would require chip thickness of 300-350 μm for FEI4-size (chips bow under bonding process)
- Started bump-bonding tests with IZM using a carrier wafer:
 - Tested with 2x2 FEI3: 14x23mm (~88% physical size of FEI4) thinned to $90 \mu m$

- Results
 - Chip bow appears acceptable
 - Bonds good also on edge
- Encouraging results for bump-bonding of large area thin chips
- Gain up to 0.3% X0

FEI4 - Module qualification program

- Plan to construct qualification modules with each technology during 2010
 - Goal is to qualify the prototype modules in lab, beamtests and irradiations to IBL specs and gain production experience (yields,...)
 - Orignal plan is ~40 modules/technology with sensors provided by sensor RD groups from recent submissions
 - This program is of common interest to sensor RD groups and IBL
 - Cost of those modules is substantial (i.e. also bump bonding) and need to be shared in a reasonable way between communities.
- Common sensor "foot print"
 - To unify (and simplify) module construction and bump bonding, we have to make sure we have a common foot print of sensors (at least with technology)

Submission: Feb 2010

- Receive wafers: early May
- Send wafer and sensor to bump-bonding: mid June
 - need sensors by beg. June
- Receive first qualification modules mid Aug. 2010
- Proceed in parallel with lab tests, testbeam and irradiation.

Off-detector

- Opto signal transmission
 - Testing available DORIC and VDC chips for signal transmission with IBL specs (160Mb/s)
 - Dedicated test bench available and running to test signal integrity with internal cable prototypes and opto chips
 - Testing data transmission over ~ 6m electrical at 160Mb/s before conversion to optical (old system ~1m electrical)

- BOC/ROD readout:
 - See <u>http://indico.cern.ch/conferenceDisplay.py?confld=68905</u>
 - Baseline with VME-based system with BOC/ROD redesigned but with "pixel infrastructure" (ATLAS LTP, TIM, VME system)
 - Need to keep an eye on the required SW developments and integration to pixel system

IBL Stave

- Minimize X0 !!!
- Stave Construction:
 - CF shell + Carbon foam
 - Pipe diameter 2 to 3mm (OD)
- Stave thermal performance
 - Constructed first staves with heaters to method thermal figure of merit
 - Constructed thermal measurement container
 - Very detailed FEA simulation of thermal gradients and stave deformations
- Pipe : CF & Ti

Picture 2: Mesh

- Constructed samples of pipe+heater to measure coolant to pipe heat transfer coefficient with C3F8 and CO2
- Started with tests on Ti pipe welding and bending and made first CF-Ti transitions
- Starting off on pipe irradiation to qualify CF pipe against micro-cracks

60/+6

2010 Stave qualification program

• Defined draft stave qualification program for 2010

- Cooling pipe: qualification of CF and Ti pipe
 - Micro-cracks
 - Welds
- Connections: pipe-pipe transitions and connectors at PP1
- Stave CF and foam: measurement of thermal figure of merit and deformation under cooling
- Flex circuit: design and prototypes of flex circuit (Kapton Cu/Al?)
 - Layout, X0 and connectivity to mini-flex on FEI4
 - Connectors on EoS

		Flavor				
	Item description	Pipe Material	Pipes diameter (and numbe	r) Samples Number		
2.1		1.1 (CF)	$\Phi_{=4mm OD}$ N=2	1		
2.2		1.2 (Ti)	$\Phi_{=4mm}$ OD N=1	2 of (4)		
2.3		1.1 (CF)	Φ=4mm OD N=1	4 [on hold]		
2.4]	1.4 (Ti)	$\Phi_{=3mm OD}$ N=1	2		
2.5	Stave	1.3 (CF)	$\Phi_{=3mm}$ OD N=1	2		
2.6		1.3 (CF)	Φ=3mm OD N=2	2		
2.7		1.6 (Ti)	$\Phi_{=2mm OD}$ N=1	2		
2.8		1.6 (Ti)	Φ=2mm OD N=2	2 [on hold]		
2.9		1.7 (CF)	∯=2mm OD	N=12 [on hold]		
2.01		1.3 (CF)	Φ =3mm OD N=2	2		
2.02	BI-stave	1.6 (Ti)	$\Phi_{=2mm OD}$ N=2	2		
2.9	Pipe + foam+heaters	1.1 (CF)	$\Phi_{=4mm OD}$	1 of (2)		
2.10	Pipe + foam+heaters	1.2 (Ti)	$\Phi_{=4mm}$ OD	1		
2.11	Pipe + foam+heaters	1.3 (CF)	$\Phi_{=3mm}$ OD	1		
2.12	Bare Pipe	1.4 (Ti)	$\Phi_{=3mm}$ OD	1		
2.13	Bare pipe	1.6 (Ti)	$\Phi_{=2mm OD}$	2		
3.01	Chart dawn	1.3 (CF)	Φ=3mm OD N=1	8		
3.02	Snort stave	1.4 (Ti)	Φ=3mm ID N=1	8		
3.03	[L=80mm]	1.6 (Ti)	$\Phi_{=2mm ID}$ N=1	8		

• Plan to review in December of the Stave Prototyping program in 2010

				X/X0 [%]			Grav sag	ThermalDef	
	Omega [um]	Foam [g/cm ³]	Pipe [Mat + ID]	Coolant	Structure +Coolant	TOTAL	Γ [°C.cm²/W]	[μm]	[μm]
Option 1	150	0.5	CF 2.5ID	C ₃ F ₈	0.48	0.88	17.25	97	63
Option 2	150	0.25	CF 2.5ID	CO ₂	0.36	0.78	18.56	75	50
Option 3	300	0.25	Ti 3ID	C ₃ F ₈	0.66	1.1	2.79	44	58
Option 4	300	0.25	Ti 2ID	CO2	0.57	0.99	3.22	-	-

Component	X/X0
Stave (incl. FE+sens ~340μm)	Range 0.8 to 1.1 %
Flex (under evaluation)	Range 0.1 to 0.2 %
IST	0.3%
Total	~1.2% (lightest) to 1.6% (heaviest)
	16/11/2009

H. Pernegger / CERN

RD50 workshop

Stave mounting

- Currently developing concepts for stave mounting based on a full 3D model of the IBL
 - FEA simulations for vibration and deflection and positioning
 - Next step is to implement 3D model of internal services and EoS cards

H. Pernegger / CERN

RD50 workshop

Flex circuit

- One of highest priorities now is to define concept for flex circuit and connection to modules
 - Drives layout to some extend (envelops)
 - Need to achieve and optimal layout for stave mechanics AND flex circuit
- Proposed baseline is to have multilayer bus with tabs to connect to modules
 - Prototype in production
 - Single layer approach is still developed further in case its needed
 - Connection to FEI4/miniflex not yet clear (several options)

DIELECTRIC CONDUCTOR TOP DIELECTRIC CONDUCTOR ΗV DIELECTRIC

MULTI Layer approach:

6-layers along the stave length, only the TOP layer to form the Tabs to be bent.

H. Pernegger / CERN

heo.084 heo.084 heo.084

IBL full package

Referencing IBL to Pixel

- Study the kinematics of IBL staves to IST and beam pipe
- Decided to decouple IBL from beam pipe to have best possible positional stability of IBL staves to pixel detector
 - Develop details for stave, BP and services support and feed-through
- Plan to use adapted version of present Pixel (quasi-)isostatic supports

New Beam Pipe

- Several options for transitions from larger to smaller radius currently under discussion with beam pipe group
 - Links to reproduction of VA beam pipe in aluminium and needs definition soon
- IBL strongly prefers to do the transition from 29->25mm IR on VA (~Z 4m to 5m?)
 - Under discussion with ATLAS TC and Beam Pipe Group
- Necessary to minimize flange diameter and serivces to fit through pixel package

RD50 workshop

IBL Installation and access to present Pixel

- Beam Pipe extraction & Installation complicated by
 - Activation of surrounding area
 - Very little access to beam pipe and long lever arm (access is at $z\sim3.5m$)
 - Minimize any risk to present Pixel Detector

Extraction sequence

- The beam pipe flange on A-side is to close to the B-layer envelope . Need to be cut on the aluminum section
- A structural pipe is inserted inside the Beam Pipe and supported at both sides.
- The support collar at PP0 A-side is disassembled and extracted with wires at PP1.
- Beam pipe is extracted from the C-side and it pulls the wire at PP1
- New cable supports are inserted inside PST at PP0.
- A support carbon tube is pushed inside the PST along the structural pipe.

IBL installation scenario I

- Different scenarios under study now
- The support carbon tube is fixed in 2 point of PP0 and on PP1 walls on side C and A.
- The structural pipe with a support system is moved out from the support carbon tube.
- The new beam pipe (in any configuration with OD up to 82,5 mm) is inserted from Cside. It has 2 supports at PP0 area and 2 floating wall at PP1 on side A and C.

IBL timeline

- Overall
 - Installation date end 2014
 - Decision was made by ATLAS management that IBL is decoupled from phase 1 upgrade
 - We assume an 8 months shutdown for IBL installation
 - Start opening to finish closing, time with access to pixel package ~ < 1/2 that time.
- 2010 Schedule for modules largely driven by FEI4 availability:
 - Expect submission ~ Feb 2010
 - First modules available during mid/end summer next year
 - Will request irradiation and testbeam time as late as possible for module qualification
 - Proceed in parallel with stave prototyping, integration and off-detector work

Summary

- The Insertable B-Layer will be a new, 4th pixel layer to be added for the high-luminosity in the present ATLAS Pixel system
 - Smaller radius and lighter to further improve pixel performance
 - Compensate for gradual inefficiency of existing B-Layer
- The IBL is the "technology" bridge to sLHC
 - Its specification requires us to develop and use new technologies, which are directly relevant for sLHC
 - Construct a full detector system with those technologies on the time scale of 4-5 years
 - Development of Radiation hard sensors
 - New architecture and process for **Pixel Front-End** Chip
 - Lighter Support structures to minimize X0

Backup slides

H. Pernegger / CERN

RD50 workshop

IBL simulation

- Run simulation, digitization, tracking
 - Generated single muons with pt=1,100 GeV/c
- Looked at resolution
- Digitization & radiation damage
 - In addition to planar pixel sensors considering different sensor technologies
 - 3d pixel sensors
 - Diamond
- Radiation damage to the existing pixel layers
- Next steps
 - Work started on more realistic IBL layout
 - Actual chip/sensor dimensions
 - Radiation damage in Layer 0 and beyond
- Run through a physics process
 - Evaluate performance

Integration concept

- Integration process studied already now as this influences support designs
 - will request space in SR1 (similar to pixel integration)
- Integration = stave mounting to global support + final tests of IBL package on surface
- Strongly influence by EoS connection
 - assume that pipes are permanent connected and electrical services added during integration of staves to BP

Services from stave to PP1

 Services between EoS and PP1: very tight around flange -> need to minimize flange diameter and service cross section to fit through IST

Dominated by LV services: DC-DC converter would help

... not yet included: beam pipe services, N2 pipes

H. Pernegger / CERN

RD50 workshop

FE-I4 Architecture: Obvious Solution to Bottleneck

- >99% of hits will not leave the chip (not triggered)
 - So don't move them around inside the chip! (this will also save digital power!)
- This requires local storage and processing in the pixel array

- Possible with smaller feature size technology (130nm)

Sensors: CVD diamond

- Approved ATLAS upgrade R&D
- pro's:
 - No leakage current increase with radiation
 - Lower capacitance, therefore less threshold required for in-time efficiency
 - Can operate at any temperature, no cooling issues
- Con's:
 - Smaller signal (with poly-crystal CVD)
 - Need to establish yield in "scale" production
 - Higher cost & number of vendors (?)

RD50 workshop

H. Pernegger / CERN