

Characterization of silicon diodes pion and proton irradiated n-MCz and n-Fz diodes proton irradiated p-Epi (50µm & 75µm)

Katharina Kaska, Manuel Fahrer, Michael Moll CERN PH-DT

2.5 x 2.5mm, 300 µm, HIP

MCz-n: 1kΩcm => depletion voltage 300V

Fz-n: 15 kΩcm => depletion voltage 20V

protons:

CERN PS, 24 GeV/c Hardness factor: 0.62, 7-8% fluence uncertainty

pions:

PSI, 300 MeV Hardness factor for pions 1.11 used => 20% uncertainty in fluence

Depletion voltage

Collected charge at 300 V

Trapping

electrons 3.43 x 10⁻¹⁶ cm⁻²/ns holes 4.37 x 10⁻¹⁶ cm⁻²/ns

Trapping after proton irradiation electrons 6.2 x 10⁻¹⁶ cm⁻²/ns holes 6.4 x 10⁻¹⁶ cm⁻²/ns

electrons: 4.5 x 10⁻¹⁶ cm⁻²/ns holes: 6.9 x 10⁻¹⁶ cm⁻²/ns

Trapping after proton irradiation electrons: 7.0 x 10⁻¹⁶ cm⁻²/ns holes: 6.8 x 10⁻¹⁶ cm⁻²/ns

PRELIMINARY

MCz

Front illumination, trapping time 7ns

=> Inconclusive =>equal double junction?

back illumination, trapping time 4.8ns

N. Pacifico et al. doi:10.1016/j.nima.20 Z. Li et. al. doi:10.1016/j.nima.2009.08.082

Material:

150 μm: 5x5mm, 1 kΩcm => depletion voltage 220V (CNM) **75 μm:** 2.5x2.5mm, 350 Ωcm => depletion voltage 180V (CiS) **50 μm:** 2.5x2.5mm, 220 Ωcm => depletion voltage 120V (CiS)

Irradiation:

24 GeV/c protons, CERN PS

Epi-n => g_c varies with layer thickness after proton irradiation positive space charge for all thicknesses after proton irradiation

Epi-p => variation? 150 μm: positive space charge after proton irradiation 75 μm, 50 μm: ?

Depletion voltage

 g_c 150 μm slightly lower, but 75 μm and 50 μm very similar

Comment: Significantly less variation than seen in Epi-n after proton irradiation

For comparison: Epi-n as measured by the Hamburg group

thickness [µm]	50	75	100	150
g _c [10 ⁻³ cm ⁻¹]	-23	-12	-6	-6

see also V. Khomenkov's talk yesterday

=> positive space charge after irradiation (type inversion)

- Depletion voltage and leakage current in Fz very similar after proton and pion irradiation
- Slight variations in MCz in leakage current and depletion voltage after proton and pion irradiation+
- Collected charge in MCz higher than in Fz
- Collected charge slightly less after pion irradition compared to proton irradiation in both materials
- Preliminary: trapping probability lower after pion irradiation, hole trapping different for Fz and MCz
- g_c doesn't strongly depend on layer thickness in Epi-p
- Type inversion after proton irradiation in Epi-p of all investigated thicknesses (150µm, 75µm, 50µm)

THANK YOU