ALIBAVA system hardware

Marco-Hernández, R.ª, On behalf the ALIBAVA Collaboration ^b

 ^a Instituto de Física Corpuscular (IFIC), Universidad de Valencia-CSIC, Valencia, Spain.
 ^b Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK. Instituto de Microelectrónica de Barcelona, IMB-CNM, CSIC, Barcelona, Spain. Instituto de Física Corpuscular (IFIC), Universidad de Valencia-CSIC, Valencia, Spain.

Outline

- Main system characteristics.
- System architecture.
- Daughter board.
- Mother board.
- Hardware/Firmware/Software Updates.
- Summary.

Main system characteristics

- A compact and portable system.
- The system can be used with two different laboratory setups:
 - Radioactive source: external trigger input from one or two photomultipliers.
 - Laser system: synchronized trigger output generated internally for pulsing an external excitation source.
- The system contains two front-end readout chips (Beetle chip used in LHCb) to acquire the detector signals.
- USB communication with a PC which will store and will process the data acquired.
- System control from a PC software application in communication with a FPGA which will interpret and will execute the orders.
- Own supply system from AC mains.

The main goal is reconstructing the analogue pulse shape from the readout chip front-end with the highest fidelity from the acquired data.

System architecture

- Software part (PC) and hardware part connected by USB.
- **Hardware part**: a dual board based system connected by flat cable.
 - Mother board intended:
 - To process the analogue data that comes from the readout chips.
 - To process the trigger input signal in case of radioactive source setup or to generate a trigger signal if a laser setup is used.
 - To control the hardware part.
 - To communicate with a PC via USB.
 - Daughter board :
 - It is a small board.
 - It contains two Beetle readout chips.
 - It has fan-ins and detector support to interface the sensors.
 - Software part:
 - It controls the whole system (configuration, calibration and acquisition).
 - It generates an output file for further data processing.

Daughter board

- Two Beetle readout chips in parallel mode (256 input channels).
- Buffer stage for Beetle analogue output signals.
 - Differential current to differential voltage buffer.
 - Buffered signals with impedance matched.
- Fast control (LVDS signals) and slow control (I²C bus) shared by Beetle chips.
- A thermistor (NTC) for sensing the temperature close the Beetle chips.
- Low voltage DC level (5 V) for Beetle chips (2.5 V) and buffer stage power supply (4.5 V): provided by the motherboard and regulated on board.
- High voltage DC level for silicon detector(s) bias: external power supply filtered on board.
- Fan-ins and detector board: detector connection by multiple wire bonding.

Beetle chip

- Readout chip developed at ASIC laboratory of the University of Heildelberg.
- 128 input channels.
- Analogue front-end with charge amplifier, shaper and charge injection circuitry (calibration).
- $V_p = kQ$. $T_p \sim 25$ ns. Total pulse length about 65-70 ns.
- Analogue signal is sampled into the analogue pipeline (128x187 cells) with the frequency of the Beetle chip clock (40 MHz).
- The analogue pipeline programmable latency fixed to 128 CLK cycles (3.2 μs).
- Fast control signals (LVDS): Rst, Clk, Trigger and Testpulse.
- Slow control (I2C) for chip configuration.

Beetle chip (II)

- Readout from a Trigger pulse: 128 channels serialized from a pipeline column.
- Analogue output format: single readout onto one output.
- Readout: 16 bits header + 128 analogue multiplexed channels.
- Channel width of 25 ns (40 MHz clock).
- DataValid signal for readout detection.
- Output dynamic range: linear up to ~ ±110000 e^{-.}

Daughter board: detector support

- Fan-ins:
 - Three fan-ins: chip fan-in, intermediate fan-in and detector fan-in.
 - Each fan-in has pads of 80 um pitch and 10 rows for multiple wire bonding.
 - A new fan-in of 256 channels have been designed.
- Detector board:
 - Accomodates the detector fan-in(s) and the sensor(s).
 - There are various detector board versions for different sensor sizes.
 - Small, for 1cm2 sensors (board dimensions ~37mm x 32mm).
 - Large, for 1cm x 3cm sensors (board dimensions ~37mm x 50mm).
- Test-box:
 - Daughter board and detector boards are fixed to base plate for facilitating wire-bonding.

Bonding pads 80 um pitch, not staggered. 10 rows for multiple wire bonding

Mother board: signal conditioning and ADC

- Signal conditioning block transforms the differential voltage analogue input signal from each Beetle to:
 - Drive an oscilloscope: single ended signal.
 - Drive ADC: differential input shifted signal.
- ADC (one for each Beetle):
 - 10 bit flash type with a sample rate of 40 MHz.
 - Nominal resolution of 1 mV (output signed code, 9 bits plus 1 sign bit).
 - Dynamic range: ±1024 mV.

Mother board: trigger inputs

- In case of radioactive source setup for obtaining a time stamp of each trigger.
- Trigger conditioning:
 - Leading-edge discrimination for two photomultiplier analogue input signals.
 - Level conversion for an auxiliary signal (current or voltage).
 - Two dual LVPECL high speed comparators.
 - Four programmable voltage thresholds: generated with a quad 12 bits DAC.
- TDC: measurement of t between input trigger and a reference signal.
 - A TDC integrated circuit (TDC-GP1).
 - Nominal resolution: 600 ps.
 - 100 ns dynamic range.

Mother board: trigger output

- In case of laser setup.
- A synchronised trigger signal (TRIG OUT) is generated to drive a laser source to reconstruct the Beetle front-end pulse shape.
- Programmable delay circuit (3D7428):
 - Resolution: 1 ns.
 - Range: up to 255 ns.
 - Programmed by FPGA by serial interface.
- Following this block a 50 Ω driver has been incorporated for driving a pulse generator input.

Mother board: other blocks

- SDRAM (256 Mb): for acquisition data storage.
- TEMPERATURE CONVERTER: NTC thermistor signal digitalization.
- SLOW CONTROL: generated directly by the FPGA. External pull-up resistors for SDA and SCL lines.
- FAST CONTROL:
 - LVDS driver (DS90LV47A) and LVDS receiver (DS90LV48A).
 - Six CM noise suppressor chokes (23Z105SM).
- USB: USB controller (FT245R) for USB to FIFO parallel (8 bits) bidirectional data transfer.
- SUPPLY SYSTEM:
 - DC input (5V) from AC adapter.
 - Digital levels from 2 DC-DC converter (1.2 V and 3.3 V) + 1 linear regulator (2.5 V).
 - Analogue levels from DC-DC converter (±5V) + 1 linear regulator (3.3V).
 - Daughter board level from DC-DC converter (5V).

Mother board: FPGA logic

- FPGA hardware:
 - Xilinx Spartan-3 (XS3400-PQ208) clocked at 40 MHz.
 - External reset push button.
 - On-system configuration PROM memory.
 - Two LEDs for system status.
- FPGA logic operation:
 - Custom logic blocks (VHDL) for low level hardware control.
 - Centralized control from a CFSM.
- FPGA logic blocks:
 - A CFSM (Central Finite State Machine) will control the different blocks depending on the current state of the system.
 - Radioactive source: the DAC CONTROL, TRIGGER IN and TDC CONTROL will be used for processing the trigger inputs and obtaining a time stamp of each trigger.
 - Laser setup: the TRIGGER OUT block will generate the output trigger signal and will control the programmable delay circuit.

Mother board: FPGA logic

- FPGA logic blocks:
 - ADC CONTROL: readout of the digitized data frames when the input DataValid (fast control) signal will be active. This digitized data will be stored in an internal FIFO RAM.
 - BEETLE FAST CONTROL: generation of fast control signals (Clk, Trigger, Testpulse and Reset) depending on the state of the system.
 - BEETLE SLOW CONTROL: I²C master controller for writing/reading the Beetle internal registers for chip configuration.
 - SDRAM CONTROL: implements a controller for interfacing the SDRAM and the CFSM.
 - USB CONTROL: interface between the USB controller and the CFSM.
 - CLOCK GENERATOR: required internal clock and reset signals generation.

Mother board: FPGA logic

- FPGA logic:
 - The CFSM and SDRAM CONTROL have been implemented with an embedded system (soft processor + SDRAM peripheral).
 - Soft processor: Microblaze (32 bits RISC) at 40 MHz.
 - SDRAM controller included as standard peripheral for the Microblaze.
 - ARBITRER : custom block of registers for communication between the embedded processor and the custom logic blocks.
 - FSLs (Fast Simplex Links): unidirectional FIFOs for fast communication between the ARBITRER and the Microblaze.
- The *functionality* of the system is programmed as a standard C program in the processor (firmware): great flexibility for changes.

Hardware/Firmware/Software Updates

- Hardware Update: daughter board linear regulator replacement.
 - 3V LDO by 4.5V LDO.
 - Increase common mode input range at the buffer stage.
 - Gain behaviour of the system at low T is improved.
- Proposed firmware/software update: calibration delay scan.
 - Delay between Trigger and Testpulse
 LVDS signals configurable by the user.
 - The aim is to reconstruct the analogue pulse at calibration stage.
 - In 1 ns steps and with a 100-150 ns range (full pulse width).
 - FPGA firmware and software changes.
 - Thanks to Michel Walz (Uni. Freiburg) and Tony Affolder (Uni. Liverpool).

Summary

- The readout system has been developed and is fully operational.
- The system can operate with different types and different sizes of microstrip detectors:
 - n-type.
 - p-type.
 - Irradiated and non-irradiated.
 - Up to 256 input channels.
- The system has been designed to operate with a radioactive source setup and a laser setup.
- The system has been distributed among RD50 Collaboration members and to other institutions.
- Feedback received from first users: proposed hardware/firmware/software updates.
- Do not forget to check the twiki of the ALIBAVA system (<u>https://twiki.ific.uv.es/twiki/bin/view/Atlas/ALiBaVa</u>) for updated info.
- Future work:
 - Upgrade of the system for testbeam acquisition.
 - Synchronization of 5 MBs.

ALIBAVA system hardware

Marco-Hernández, R.ª, On behalf the ALIBAVA Collaboration ^b

 ^a Instituto de Física Corpuscular (IFIC), Universidad de Valencia-CSIC, Valencia, Spain.
 ^b Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK. Instituto de Microelectrónica de Barcelona, IMB-CNM, CSIC, Barcelona, Spain. Instituto de Física Corpuscular (IFIC), Universidad de Valencia-CSIC, Valencia, Spain.

PC software

- Functions:
 - Control the whole system (configuration, calibration and acquisition).
 - Processing and monitoring of acquired data.
 - User interface with the system (GUI).
 - Generation of information (output files).
- Two software levels:
 - Low level:
 - Software/mother board communication by USB: VCP (virtual com port) driver (2.4 Mb/s) used.
 - Processing of acquired data.
 - High level:
 - GUI: control of the system and data monitoring.
 - Output file generation for further processing and analysis.
- Programmed in C++.
- Operating system compatibility:
 - Linux version fully operational.
 - Maybe Windows in the future.
- There are also macros for ROOT in order to process the data acquired with the software.

Mother board: system operation

- RESET:
 - System initialization.
 - With a power on, with an external reset or by software reset.
- WAITING:
 - The system waits for an order coming from the PC software to go to another state.
- BEETLE CONFIGURATION:
 - Beetle chips configuration registers programming.
- CALIBRATION:
 - System calibration by the Beetle internal test pulse generator.
 - Known amplitude readouts are acquired.
- TRIGGER IN CONFIGURATION:
 - DAC voltage thresholds are programmed.
 - Trigger inputs scheme is configured.
- LASER SYHRONIZATION:
 - The system is synchronized for the Beetle front end pulse reconstruction.
 - By delaying the TRIG OUT signal in 1 ns steps.

Mother board: system operation

- PEDESTALS, RS or LASER ACQUISITION:
 - A programmable number of readouts can be acquired (up to 64776) and stored in the SDRAM.
 - PEDESTALS: For each event a Beetle chips readout (256 by 16 bits) and a temperature readout are stored in the SDRAM. No charge acquired with Beetle chips.
 - RS: For each event a Beetle chips readout (256 by 16 bits), a TDC readout (32 bits) and a temperature readout are stored in the SDRAM.
 - LASER: For each event a Beetle chips readout (256 by 16 bits) and a temperature readout (16 bits) are stored in the SDRAM. The TRIG OUT frequency is fixed to 1 KHz.
- PEDESTALS, RS or LASER READING:
 - The last type of acquisition data are read from SDRAM and data are sent to PC by USB.

