New Measurements of Lorentz angle in (irradiated) silicon-strip-detectors

Wim de Boer, Alexander Dierlamm, Andreas Sabellek, <u>Mike Schmanau</u>, *Michael Schneider*

> RD50 Workshop CERN, Geneva, 2009

What is new?

• Measured real CMS ministrip sensors

(instead of ministrips from HERA-B, which had smaller pitch) CMS sensors allowed to measure to much higher bias voltages, use 500 µm for better sensitivity

- Measured RD50 n-in-p sensors to get much better Lorentz angle measurements for electrons
- Measured Lorentz angle in highly irradiation sensors

Outline

- Experimental Setup
- Sensors
- Model for calculating the Lorentz angle
- Results
- Lorentz angle over fluence
- Comparison with CMS data
- Summary

Experimental Setup (1)

Experimental Setup (2)

- Sensor with readout-chip PreMux (=APV w.o. Pipeline) on hybrid
- Hybrid mounted on structure for magnet
- Optical fibers for laser
 - red laser for best signal
 - infrared laser for MIP-like signal

Mike Schmanau, IEKP

Experimental Setup - Magnet

- Magnet lab of ITP at Forschungszentrum Karlsruhe
- Measurements of Lorentz shift up to 8T

Sensors

Sensorname	Manufacturer	Material	Thickness $[\mu m]$	$U_{dep}~[\mathrm{V}]$	Fluence $[\frac{n_{ee}}{cm^2}]$ Pitch[µm]	
FZ-p-in-n-0-h-154-CMS	ST Microelectronics	FZ n-type	500	154	0	120
FZ-n-in-p-0-e-12	Micron / RD50	FZ p-type	300	12	0	
FZ-n-in-p-1E15-e-1000	Micron / RD50	FZ p-type	300	pprox 1000	$1\cdot 10^{15}$	80
FZ-n-in-p-9.8E15-e-1000	Micron / RD50	FZ p-type	300	> 1000	$9.8\cdot 10^{15}$	
MCz-p-in-n-7.1E14-h-169	HIP	MCz n-type	300	169	$7.1\cdot 10^{14}$	50
MCz-p-in-n-7.1E14-h-272	HIP	MCz n-type	300	272	$7.1\cdot10^{14}$	
MCz-p-in-n-7.2E15-h-1000	HIP	MCz n-type	300	> 1000	$7.2\cdot 10^{15}$	
MCz-p-in-n-0-h-347	HIP	MCz n-type	300	347	0	

- Measurement of depletion voltage by finding the knee in the $1/C^2$ over U plot
- Irradiated at Karlsruhe Kompaktzyklotron with 23 MeV protons
- Hardness factor 1.9

Signals of unirradiated sensors

Model for calculating the Lorentz angle

An Algorithm for calculating the Lorentz angle in silicon detectors.

V. Bartsch, W. de Boer, J. Bol, A. Dierlamm, E. Grigoriev, F. Hauler, S. Heising, L. Jungermann. **Nucl.Instrum.Meth.A497:389-396,2003**. e-Print: **physics/0204078**

$$E(z) = \frac{U_{Bias} - U_{Dep}}{d} + 2\frac{U_{Dep}}{d}\left(1 - \frac{z}{d}\right)$$

mobility

$$\mu(E) = \frac{\mu_0}{\left(1 + \left(\frac{\mu_0 E}{v_{\text{sat}}}\right)^\beta\right)^{\frac{1}{\beta}}}$$

C. Jacoboni, C. Canali, 1977

Electrons (up valid for T>200K)

n. evxB evxB eE eE r_{H} =Hall factor, depends on scattering

 $\tan\theta_{I} = evB/eE = v/EB = r_{H}\mu B$

mechanism

possible fit of 4 parameters:

- shaping exponent β
- temperature exponents

$$\mu_0 = 1417 \frac{cm^2}{Vs} \cdot \left(\frac{T}{300}\right)^{-2.42}; \beta = \underline{1.109} \cdot \left(\frac{T}{300}\right)^{\underline{0.66}}; v_{\text{sat}} = 1.07 \cdot 10^7 cm/s \cdot \left(\frac{T}{300}\right)^{\underline{-0.87}}$$

Holes (µ0 valid for T>50K)

$$\mu_0 = 470.5 \frac{cm^2}{Vs} \cdot \left(\frac{T}{300}\right)^{-2.2}; \beta = \underline{1.213} \cdot \left(\frac{T}{300}\right)^{\underline{0.17}}; v_{\text{sat}} = 8.37 \cdot 10^6 cm/s \cdot \left(\frac{T}{300}\right)^{\underline{0.52}}$$

Results (1) Lorentz-shift of unirradiated sensors

B field linearity of the CMS sensor

The data taken with the MCz-sensor has quite large deviations to the model, due to large deviations of the model at high voltages and measured Lorentz-shifts below the sensor pitch. The new data shows a linear dependence on

the magnetic field, which confirms the

Lorentz-shift dependence:

$$\Delta x = r_H \cdot \mu \cdot B \cdot \Delta d$$

used by the model.

Results (1) Lorentz shift of unirradiated sensors

Mike Schmanau, IEKP

Lorentz angle versus fluence

•Strong dependence of Lorentz shift for holes on fluences above 1*10¹⁵ n/cm²?

•Vanishing Lorentz shift for electrons above1*10¹⁵ n/cm²?

- •Change of sign at high fluences for electrons??
- But strange binary effect for this measurement!

Lorentz angle from cluster width in CMS

Figure 4: Estimate of the tangent of the Lorentz angle (p_0) provided for the model, for TIB (left) and TOB (right) modules, at the MTCC working conditions.

CMS NOTE-2008/006

noid Experiment

The Compact Muon Sole

Mike Schmanau, IEKP

Comparison of CRAFT data to the model

Slide from " Lorentz angle calibration. CRAFT data.

CRAFT REPRO Cosmic MC." S. Frosali, V. Ciulli, 17 March 2009

Black: (µн)measured ; Red: (µн)expLy ;

Blue line: (µ_H)expected (TIB/TOB)

In the plots the mean and the error on the mean obtained from the gaussian fit for each layer are shown

12

We measure μ_H values lower than the expected ones, ~25% for TIB and ~14% for TOB

Summary

- New Lorentz measurements for holes with real mini-CMS sensors (100 orientation, previous partially 111)
- Strong difference for the Lorentz of holes and electrons at high fluences compared to lower ones
- Since Lorentz angle varies with fluence, in situ measurement by analog read out is needed for SLHC
- Slide changes for the new data, but still incompatible with CMS minimal cluster width method

Experimental Setup (3)

Mike Schmanau, IEKP

Parametrization of Lorentz angle model

An Algorithm for calculating the Lorentz angle in silicon $\frac{1}{2} \frac{1}{2} \frac{$

V. Bartsch, W. de Boer, J. Bol, A. Dierlamm, E. Grigoriev, F. Hauler, S. Heising, L. Jungermann. **Nucl.Instrum.Meth.A497:389-396,2003**. e-Print: **physics/0204078**

$$E(z) = \frac{U_{Bias} - U_{Dep}}{d} + 2\frac{U_{Dep}}{d}\left(1 - \frac{z}{d}\right)$$

$$\mu = \frac{\mu_0}{\left(1 + \left(\frac{E\mu_0}{v_s}\right)^\beta\right)}$$

electrons

$$\mu_0 = 1417 \frac{cm^2}{VS} (T/300K)^{-1.76 \pm 0.08}$$

 $\beta = (1.247 \pm 0.054)$

$$v_{sat} = 1.0 \cdot 10^7 \frac{cm}{s} (T/300K)^{\frac{0.89 \pm 0.10}{s}}$$

Mike Schmanau, IEKP

evxB eE

 r_{H} =Hall factor, depends on scattering mechanism

New fit of the 4 parameters:

- shaping exponent β
- temperature exponents

holes

$$\mu_0 = 470.5 \frac{cm^2}{VS} (T/300K)^{-2.60\pm0.03}$$

 $\beta = (1.383 \pm 0.052) (T/300K)^{0.07\pm0.05}$
 $v_{sat} = 8.37 \cdot 10^6 \frac{cm}{s}$

New: Parametrization of hall scattering factor

$$r_H = (0.87 \pm 0.02) + (1.32 \pm 0.09) \cdot 10^{-4} \cdot E - (0.89 \pm 0.09) \cdot 10^{-8} \cdot E^2$$

•Parabolic dependence of hall scattering factor on electric field

Good description of data

•A constant r_H seems not appropriate (1.1 expected for small fields (i.e. small Lorentz angles, implying little curvature between scatterings)

Mike Schmanau, IEKP

