

A Truth-level Study of GMSB in ATLAS using $Z(\ell^+\ell^-) + \not \in_T$ final state; $\ell = \mu, e$

Javier M. G. Duarte

Massachusetts Institute of Technology Department of Physics

August 13, 2009

ヘロト ヘアト ヘビト ヘビト

= 990

Javier M. G. Duarte

1 Mass Spectrum, Event Generation, and Preselection

2 Different Parents of Z

- 3 Strong vs. Weak Initial Production
- 3 Expanding Parameter Space

▲口 > ▲母 > ▲目 > ▲目 > ▲目 > ▲日 >

Javier M. G. Duarte

Preliminaries

- In GMSB, "Messengers" communicate SUSY breaking to super particles
- There are four super particles called neutralinos (\$\tilde{\chi}_1^0, \$\tilde{\chi}_2^0, \$\tilde{\chi}_3^0, \$\tilde{\chi}_4^0\$), labeled in order of increasing mass
- Neutralinos are Mass Eigenstates. Each is a mixture of the Weak eigenstates: gauginos (W, B) and neutral Higgsinos (H⁰_u, H⁰_d)
- "Higgsino-like" Neutralino means that the Neutralino has a large component of the Higgsino weak eigenstates
- In any SUSY model, the sparticles cascade decay to the NLSP, which then decays to its standard model partner and the LSP
- In this GMSB "Model Line" the LSP is the gravitino \tilde{G} and the NLSP is $\tilde{\chi}^0_1$

Introduction Mass Spectrum Event Rates Parent of Z Strong vs. Weak Initial Production Parameter Space

Mass Spectrum Generation

 Generated mass spectrum corresponding to GMSB parameters from Model Line E¹

Λ
 M
 N₅
 tan(β)
 μ
 C_{grav}

 80 TeV
 3Λ
 2
 3

$$\frac{3}{4}M_1$$
=169 GeV
 1

This point in parameter space corresponds to

 $\begin{array}{ccc} {\rm Paricle} & {\rm Mass} \\ \tilde{G} \, ({\rm LSP}) & 4.62 \ {\rm eV} \\ \tilde{\chi}^0_1 \, ({\rm NLSP}) & 134.7 \ {\rm GeV} \\ \tilde{\chi}^0_4 & 443.3 \ {\rm GeV} \\ \tilde{C}^\pm_2 & 442.9 \ {\rm GeV} \end{array}$

・ロ・・ (日・・ (日・・ (日・)

¹H. Baer *et al.*, Phys. Rev. D **62** (2000)

Javier M. G. Duarte

Event Generation and Preselection

Generation

- Generated 75000 events of the process $pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0$ based on the SUSY mass spectrum with ATLAS Athena 14.2.25.9
- Forced $Z \rightarrow \ell \ell$, $\ell = \mu$, *e* decay mode (to save time in event generation)

For 10 TeV, $\sigma(pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0) = 1.88$ pb.

Preselection

- $|\eta(\mu/e)| < 2.5$
- p_T(µ/e) > 6 GeV

Javier M. G. Duarte

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

Different Production Mechanisms

We separated the SUSY data sample by (1) parent of Z and (2) initial production mechanism. Then we looked at the differences in kinematics.

For the parent of Z, we looked at two channels: parent is $\tilde{\chi}_1^0$ or parent is one of { \tilde{C}_2^{\pm} , $\tilde{\chi}_4^0$ }.

For the initial production, we looked at two channels: Strong, i.e. first two particles can be $\tilde{g}\tilde{g} + \tilde{g}\tilde{q} + \tilde{q}\tilde{q}$ Weak, i.e. first two particles in chain can be $\tilde{\chi}_{i}^{0}\tilde{\chi}_{i}^{0} + \tilde{\chi}_{i}^{0}\tilde{C}_{i}^{\pm} + \tilde{C}_{i}^{\pm}\tilde{C}_{i}^{\pm}$

Main background of Standard Model Inclusive Z is plotted alongside signal. All histograms are normalized to 1 for shape comparison.

Javier M. G. Duarte

Different Production Mechanisms

75000 events generated (forced $Z \rightarrow \ell \ell$ decay) 40211 events pass preselection

Pare	ent of Z	
Process	Rate	Cross-Section
$ ilde{\chi}^0_1 o Z(\ell^+\ell^-) ilde{G}$	39216 52%	66 fb
$ ilde{\chi^0_4, ilde{C}^\pm_2 ightarrow Z(\ell^+\ell^-)X}$	993 1.3%	1.7 fb

Initial Production in Decay Chain			
Process	Rate	Cross-Section	
$m{q}ar{m{q}} ightarrow ilde{\chi}^{0}_{i} ilde{\chi}^{0}_{j} + ilde{\chi}^{0}_{i} ilde{C}^{\pm}_{j} + ilde{C}^{\pm}_{i} ilde{C}^{\pm}_{j}$	37651 50%	63 fb	
$qar{q} o ilde{g} ilde{g} + ilde{g} ilde{q} + ilde{q} ilde{q}$	790 1.0%	1.3 fb	
		· • • • • • • • • • • • •	

Javier M. G. Duarte

Different Production Mechanisms

- Due to the greater momentum transfer for more massive parents { C
 [±]₂, x
 ⁰₄}, these events are easier to discriminate from SM inclusive Z background.
- However, the rate for events with more massive parent is much smaller than for NLSP.
- Variables with very clean separation include Number of Jets, ΣE_T of Jets, Missing E_T, and ΔR between muons.

Different Production Mechanisms

Next we separated the signal between Strong production $(\tilde{g}\tilde{g} + \tilde{g}\tilde{q} + \tilde{q}\tilde{q})$ and Weak production $(\tilde{\chi}_i^0 \tilde{\chi}_i^0 + \tilde{\chi}_i^0 \tilde{C}_i^{\pm} + \tilde{C}_i^{\pm} \tilde{C}_i^{\pm})$.

Example of Neutralino-Neutralino production in GMSB

Likewise, SM Inclusive Z is plotted alongside signal.

Javier M. G. Duarte

Conclusions

- Although strong production has a much smaller cross-section than weak production (1 fb vs 60 fb), it is easier to distinguish from background.
- Variables with very clean separation include Number of Jets, ΣE_T of Jets, Missing E_T, and ΔR between muons.

Javier M. G. Duarte

Expanding Parameter Space

We chose one point in parameter space along this "Model Line"

- *M*₁ is the gaugino mass and it depends on the other parameters
- In this model line, $\Lambda = 80$ TeV balances a high branching ratio Br($\tilde{\chi}_1^0 \rightarrow \tilde{G}Z$) and a high neutralino production cross section so it is fixed
- We varied Number of Messengers N_5 , μ , and $tan(\beta)$
- Since the kinematics depend heavily on the masses and branching ratios of NLSP among other particles, we plot these.

Introduction Mass Spectrum Event Rates Parent of Z Strong vs. Weak Initial Production Parameter Space

Javier M. G. Duarte

- Only N₅ = 2,3 is relevant for this study (NLSP to Z branching ratio zero otherwise)
 - Masses of relevant sparticles increase linearly with N_5 , thus reconstruction would have to change for $N_5 = 3$
 - Branching ratios to Z and sparticle masses vary little from $tan(\beta) = 2$ to 15.

Acknowledgements

- Dr. Natalia Panikashvilli
- Professor Homer Neal
- Professor Jean Krisch
- Professor Myron Campbell
- Jeremy Herr
- Fellow REU Students

Javier M. G. Duarte

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Javier M. G. Duarte