Update on Top FCNC Studies
 O. Cakir*
 Ankara University

*with collaboration H.Denizli, A.Senol, I.Turk Cakir, A.Yilmaz, H.Karadeniz

BSM physics studies at ep colliders, vidyo meeting, 11 August 2017

OUTLINE

- Introduction
- Top physics at ep colliders
- Top quark FCNC interactions
- Cross sections
- Detector simulation
- Analysis
- Conclusions

FUTURE PROSPECTS OF EP COLLIDERS

LHeC
7 TeV proton of LHC and 60 GeV electron $(\sqrt{s} \sim 1.3 \mathrm{TeV})$

FCC-he
50 TeV proton of FCC and 60 GeV electron $(\sqrt{s} \sim 3.5 \mathrm{TeV})$

PHYSICS AT FUTURE EP COLLIDERS

O. Bruning et al., PoS EPS-HEP2015 (2015) 520

Precise measurements of couplings between SM gauge bosons and quarks and leptons are sensitive test of new physics (search for deviations), due to its large mass the top quark is expected to be the most sensitive to BSM physics.

The future ep colliders offers excellent prospects for top physics.

The FCC-he and LHeC compared to previous DIS experiments. The plot indicates the placement of key physics subjects in the kinematics plane of x and Q^{2}.

TOP QUARK FCNC INTERACTIONS

Sensitive search for FCNC couplings will constrain BSM models

CROSS SECTIONS FOR SIGNAL

Process: e-p->e-Wq+X.
Signal cross sections at FCC-ep collider depending on FCNC tqY couplings λ_{u} and λ_{c} within the interested range.

PDF: NNPDF2.3

+ similar diagrams for tcy
(further diagrams for process e-p->e-W-q+X with the interchange $q<->q^{\sim}$)

ANALYSIS FRAMEWORK

For the analysis, after pre-selection, we use the analysis cuts for further background suppression

Cut flow

Cut-0 : at least one electron and three jets (pre-

 selection with default MG5 cuts)Cut-1 : require one of three jets as being b-tag

Cut-2 : b-tagged jet has transverse momentum $\mathrm{p}_{\mathrm{T}}>35$ GeV and other jets have $p_{T}>25 \mathrm{GeV}$, and electron has $p_{T}>20 \mathrm{GeV}$
Cut-3: all jets have pseudo-rapidity $-5.0<\eta<0$; and electron has $-2.5<\eta<2.5$
Cut-4: invariant mass of two jets within $50<\mathrm{m}_{\mathrm{jj}}<90 \mathrm{GeV}$ (for W- boson)
Cut-5 : invariant mass of three jets (for top) between $130<\mathrm{m}_{\mathrm{bjj}}<200 \mathrm{GeV}$

FCC-EP: (S+B)/B AND RELEVANT BACKGROUNDS

S: ep $\rightarrow e W j$
$B w: ~ e p \rightarrow e W j$
Bz: $e p \rightarrow e Z j$
Вн: ep $\rightarrow e H j$
Btt: ep $\rightarrow e \bar{t} t$

- With the relevant backgrounds
$\left(B_{T}=B_{W}+B_{Z}+B_{H}+B_{t t}\right)$, the ratio $(S+B) / B$ are shown in figure.
arXiv:1701.06932

FCC-EP: (S+B)/B AND RELEVANT BACKGROUNDS

FCC-EP: SS PLOT

Statistical significance $S S=\sqrt{ } 2\left[\left(S+B_{T}\right) \ln \left(1+S / B_{T}\right)-S\right]$ for $e^{-p}->e^{-}+b j e t+2 j$ with $t q v$ FCNC interactions. Here, we assume equal coupling scenario $\lambda_{u}=\lambda_{c}=\lambda$.

All relevant backgrounds $\left(B_{T}\right)$ are included, 3o significance: at $\lambda=0.01$ for $\mathrm{L}_{\text {int }}=40 / \mathrm{fb}$.

* Compare with LHeC when $\lambda_{q}=0.01$ for $\mathrm{L}_{\text {int }}=200 / \mathrm{fb}$.

We find 3σ signal significance result to reach an upper limit $\lambda=0.01$ with integrated luminosity of $40 / \mathrm{fb}$ at FCC-ep. For comparision, in order to reach this coupling at LHeC we need 200/fb. This limit on the coupling can also be translated to the branching ratio $\mathrm{BR}(\mathrm{t}->\mathrm{q} \gamma)=2 \times 10^{-5}$.

LUMINOSITY VS COUPLING

CONCLUSION

- In this talk we present a short overview of the top FCNC at the ep colliders, which has also a rich top physics programme.
- Top FCNC tqy couplings can be measured down to $\lambda_{q}=0.01$ and it can be translated into branching ratio $B R(t \rightarrow q \gamma)=2 \times 10^{-5}$ at the FCC-eh
- These studies have been performed with the updated Delphes detector simulation.

$+$

COMPARISON: TOP FCNC AT LHC

Based on proton-proton collisions at 8 TeV within the CMS detector at the LHC at an integrated luminosity of $19.8 \mathrm{fb}^{-1}$, the limits ($95 \% \mathrm{CL}$) on the top quark FCNC couplings

$$
\mathcal{L}_{\mathrm{eff}}=-e Q_{\mathrm{t}} \sum_{\mathrm{q}=\mathrm{u}, \mathrm{c}} \overline{\mathrm{q}} \frac{i \sigma^{\mu \nu} q_{\nu}}{\Lambda}\left(\kappa_{\mathrm{tq} \gamma}^{\mathrm{L}} P_{\mathrm{L}}+\kappa_{\mathrm{tq} \gamma}^{\mathrm{R}} P_{\mathrm{R}}\right) \mathrm{t} A_{\mu}+\text { h.c. }
$$

$$
\begin{aligned}
& \mathrm{BR}(\mathrm{t} \rightarrow \mathrm{u} \mathrm{\gamma})=1.7 \times 10^{-4} \\
& \mathrm{BR}(\mathrm{t} \rightarrow \mathrm{c} \mathrm{\gamma})=2.2 \times 10^{-3} \\
& \text { CMS Collab.JHEP04(2016)035 }
\end{aligned}
$$

Discussion on different energy options

