Top Pair-Production theory overview

17-22 September, Braga, Portugal

Andrew Papanastasiou Cavendish Laboratory, University of Cambridge

Outline of talk

- Precision in production
 - news from NNLO-QCD
 - an application and a problem
- \blacktriangleright Towards the physical final states of $t\bar{t}$
 - toward NNLO production & decay in NWA
 - offshell and offshell + parton showers

Apologies in advance for omissions in this talk. I will talk about work done on $t\bar{t}$ mainly in the past year or so. I will also not have time to cover $t\bar{t}$ with resummations: talk by A. Ferroglia today 16:00

The state-of-the-art

lacktriangle fully-differential NNLO-QCD predictions for tar t production

The state-of-the-art

Important outcomes of [1606.03350]:

[Czakon, Heymes, Mitov '16]

- detailed study of scale dependence through NNLO at fixed order
- dynamical scales crucial in multi-TeV regimes, however, how to pick dynamical scale? (typically large differences between choices)
- based on criterion of best (fastest) perturbative convergence, across full ranges of distributions, the following scales were found to be optimal

$$\mu = \begin{cases} M_T/2, & \text{for } p_T(t), \ p_T(\bar{t}), \ p_T(t)_{\text{ave}} \\ H_T/4, & \text{for all others studied } (y(t), \ m_{t\bar{t}}, \ p_T(t\bar{t}), y_{t\bar{t}}) \end{cases}$$

- Note: $\sigma^{\text{NNLO}}(\mu = H_T/4) \simeq \sigma^{\text{NNLO+NNLL}}(\mu = m_t)$
- forms basis for scale choices in all NNLO studies that follow
- ▶ given scale uncertainty under control, in TeV-region leading uncertainty now comes from PDFs (different sets giving v. different results!)

New observables: LHC charge asymmetry, A_c

$$A_c = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$

$$\Delta|y| = |y(t)| - |y(\bar{t})|$$

[Czakon, Heymes, Mitov, Pagani, Tsinikos, Zaro - in preparation]

- unexpanded denominator
- NNLO-QCD corrections (& NLO-EW) increase total asymmetry (but not asymmetry in all bins of $m_{t\bar{t}}$)
- very challenging numerically due to large cancellations in numerator

Precision in Production NNLO QCD + NLO EW

Dedicated talk by D. Pagani, tomorrow 16:30

- ▶ NLO-EW corrections tend to be small for total cross section, but
- large EW-Sudakov logarithms could have a large impact in tails of distributions, and in TeV-regime kinematics
- in [1705.04105] (see also [1606.01915]) [Czakon,Heymes,Mitov,Pagani,Tsinikos,Zaro '17; Pagani, Tsinikos, Zaro '16]
 - \blacktriangleright assessment of overall size of EW corrections to $p_T(t),~m_{t\bar{t}},~y(t),~y_{t\bar{t}}$ for LHC 13 TeV
 - study effects of different photon PDFs

Precision in Production NNLO QCD + NLO EW

- ▶ $p_T(t)$: EW corrections grow from +2% \rightarrow -25% in range [0,3] TeV
- $ightharpoonup p_T(t)$: EW corrections as significant as NNLO-QCD scale uncertainty
- \blacktriangleright smaller effects for $m_{t\bar{t}}$

Ease of use: fastNLO tables

[Czakon, Heymes, Mitov '17]

- ▶ typically $\mathcal{O}(10^5)$ CPU hours for a single NNLO calculation (for <u>fixed</u> observables, scales, m_t , PDFs)
- option to compute distributions quickly with updated/improved
 PDF sets preferrable to re-running each time a new set is released
- ▶ applications such as PDF fitting, α_s or m_t extractions require results computed with $\mathcal{O}(10-1000)$ PDFs ...
 - ⇒ require flexible storage format for fast evaluations
- ► fastNLO [Britzger et al.] has been interfaced to STRIPPER
- ✓ PDF and α_s independent storage \Rightarrow fast, $\mathcal{O}(\mathrm{seconds})$, recalculation of distributions
- ► fastNLO first tables produced for the central (dynamical) scale choice, as prescribed in [1606.03350]

Ease of use: fastNLO tables

[Czakon, Heymes, Mitov '17]

- same MC sample used for direct calculation and filling of tables
- \checkmark interpolation error $\lesssim 0.1\%,$ much smaller than MC error of NNLO calculation <0.5%
- ✓ all results checked against statistically independent calculations

- ▶ tables for $p_T(t)$, y(t), $y(t\bar{t})$, $M(t\bar{t})$ at 8 TeV (ATLAS & CMS binnings) available at: www.precision.hep.phy.cam.ac.uk
- ▶ tables for 13 TeV, 2D observables, different masses on the way!

[Czakon, Hartland, Mitov, Nocera, Rojo '16]

top-pair production data sensitive to large-x gluon PDF

- ▶ [1611.08609] performed a global fit (in NNPDF framework) using NNLO $t\bar{t}$ predictions to study impact of diff. top data on PDF fit
- **b** baseline fit data: \sim NNPDF3.0, without $\sigma_{t\bar{t}}$ & inclusive-jet data
- fit with top data: included (all 8TeV, l+jets channel)

 $t\bar{t}$ production (theory)

- ► ATLAS normalized *y_t* distribution
- ▶ CMS normalized $y_{t\bar{t}}$ distribution
- ▶ ATLAS & CMS measurement of $\sigma_{t\bar{t}}$

[Czakon, Hartland, Mitov, Nocera, Rojo '16]

▶ top-pair production data sensitive to large-x gluon PDF

- ightharpoonup [1611.08609] performed a global fit (in NNPDF framework) using NNLO $t\bar{t}$ predictions to study impact of diff. top data on PDF fit
- **b** baseline fit data: \sim NNPDF3.0, without $\sigma_{t\bar{t}}$ & inclusive-jet data
- ▶ fit with top data: included (all 8TeV, l+jets channel)
 - ightharpoonup ATLAS normalized y_t distribution
 - ightharpoonup CMS normalized $y_{t\bar{t}}$ distribution
 - ▶ ATLAS & CMS measurement of $\sigma_{t\bar{t}}$

✓ small dependence on m_t uncertainty ✓ low BSM sensitivity

Application: probing high-x gluon – outcomes

[Czakon, Hartland, Mitov, Nocera, Rojo '16]

- red: baseline-fit PDFs (NNPDF) blue: PDFs after select top data included
- bands: PDF uncertainties → reduction by factor 2!
- description of obs. included in fit improves, but little/no improvement of distributions not included in fit
 - Relative uncertainty on gluon-gluon lumi at high M_X shows remarkable reduction, with inclusion of just 17 data points!
 - differential top data is very constraining and perhaps can compete with jets
 - surely one of the big motivations for $t\bar{t}$?

Some unsettling observations

[Czakon, Hartland, Mitov, Nocera, Rojo '16]

Two examples of 'tension' between measurements:

Some unsettling observations

[Czakon, Hartland, Mitov, Nocera, Rojo '16]

- very difficult to get a good description of both ATLAS and CMS (l+jets 8TeV) data, particularly for normalized y_t , $p_T(t)$ and $m_{t\bar{t}}$
- for best fit quality authors had use a different observable from each experiment (multiple distributions from each exp. not possible due to lack of correlations b/w distributions)
- to maximize benefit of NNLO predictions, such discrepancies must be resolved
 - has there been any understanding to the reasons behind discrepancies?
 - are we missing/underestimating some systematic uncertainty?
 - ► are ATLAS and CMS presenting exactly the same 'stable-top' quantities?

Moving towards physical final states The top quark is not stable

- \blacktriangleright due to its large width, Γ_t , top quark decays before hadronizing ...
- ► top quarks not directly measured presence always inferred through their decay products: leptons, (b)jets, missing energy
- ▶ To compare to stable top predictions, experiments have to
 - extrapolate their measurements from fiducial to inclusive
 - extrapolate/model from particle-level to top-quark partons
- this back-modelling depends on Monte Carlo
 - each MC generator has a different shower & (potentially) way of attaching the decay
 - ⇒ is the top 'parton' one arrives at is a MC-dependent object?
 - ▶ these steps currently use MCs that treat top decay at LO
 ⇒ no reliable estimate of uncertainty on shape & normalization
 - due to higher order corrections to decay

Moving towards physical final states Predictions (fixed order)

Two mainstream ways of calculating, when top decay is included:

- Narrow-width approximation (NWA), $p(t)^2 = m_t^2$, $\Gamma_t \to 0$ limit
 - ► NLO: [Bernreuther, Si; Melnikov, Schulze; Campbell, Ellis (MCFM)]
 - production / decay of onshell tops completely factorize
 - compute higher-order corrections to prod. & decay separately
 - for large class of observables NWA is an excellent approx (error $\sim \mathcal{O}(\Gamma_t/m_t)$)
- Offshell, $p(t)^2 \neq m_t^2$
 - ▶ NLO: [Bevilaqua et al, Denner et al, Falgari et al, Heinrich et al, Frederix, Cascioli et al]
 - diagrams involving top quarks only form a subset of all required contributions
 - ▶ since there are both resonant and non-resonant contributions, notion of a physical, onshell top-quark parton loses meaning
 - finite-width effects vital in certain regions of phase space, e.g. edge of M_{bl} distribution!

Moving towards physical final states Predictions (fixed order)

Key features:

- predictions built from matrix-elements with bs & leptons in final state
- consistently include higher order corrections in production & decay

Measurements can be directly compared to predictions from these codes!

Narrow-width approximation (NWA)

Narrow-width approximation (NWA)

(also: NLO-tdecay x NLO- \bar{t} decay)

Moving towards physical final states <u>Towards NN</u>LO production & decay

- exact NNLO not yet available: ongoing work within Stripper
- recent work: approx-NNLO prod. [Broggio,AP,Signer '14] with exact NNLO in decay [Gao,Li,Zhu '12] (& exact interferences): NNLO [Gao,AP '17]

- ▶ significant improvement in agreement of theory with measurements
- ▶ to see good agreement for both ATLAS and CMS fiducial volumes, must include corrections in prod. & decay including no corrections in decay ⇒ cross section $\sim 8\%$ larger than full result, for CMS volume

Moving towards physical final states Towards NNLO production & decay

Comparisons also made differentially:

- CMS 8 TeV: [1505.04480,1510.03072]
- ► ATLAS 8 TeV: [ATLAS-CONF-2017-044]

[Gao,AP '17]

 $m_t = 173.3 \text{ GeV}$ $\mu \in [m_t/2, 2m_t]$

MMHT2014 PDFs

- ▶ good agreement in norm. & shape with NNLO predictions
- lacktriangle start exploiting these for applications, e.g. $m_t^{
 m pole}$ -extraction from $\sigma^{
 m fid}$

Moving towards physical final states Offshell state-of-the-art

- NLO corrections to $e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} + X$ known [5FS: Bevilaqua et al, Denner et al, Heinrich et al 4FS: Frederix, Cascioli et al]
- lacktriangledown recently: NLO corrections to $e^+
 u_e\mu^-ar
 u_\mu bar bj+X$ [Bevilaqua,Hartando,Krauss,Worek '15,16']

small for large class of obs.

• excellent performance of NWA,

offshell & nonresonant effects very

when NLO corrections to prod & decay included

Notice: NLO-production with LO-decay not a good approx. of full result (shape & norm.)

Moving towards physical final states Offshell state-of-the-art

- NLO corrections to $e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} + X$ known [5FS: Bevilaqua et al, Denner et al, Heinrich et al 4FS: Frederix, Cascioli et al]
- recently: NLO corrections to $e^+
 u_e\mu^-ar
 u_\mu bar bj+X$ [Bevilaqua,Hartando,Krauss,Worek '15,16']

[Bevilaqua, Hartando, Krauss, Schulze, Worek - in preparation]

- near kinematic thresholds / edges of distributions, offshell effects become crucial
- good description of these phase space regions relies on top kept offshell
 - ⇒ NWA fails (not designed to capture these effects)

NWA & Offshell $t\bar{t}$ matched to parton showers

See also talk by T. Ježo \rightarrow tomorrow 11:50

- ▶ Aim: to match $e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b} + X$ to parton showers
- despite top quarks not being a final state in the matrix elements, an 'intermediate top' must be written in event file if one wants the PS to preserve the resonance mass
- resonance-aware matching to parton showers for $t\bar{t}$ (NWA & offshell) have been developed in the POWHEG framework over last couple of years
- two state-of-the-art generators:
 - " $tar{t}\otimes {
 m decay}$ ": NWA, NLO corrections in prod. & decay, and LO approximation of finite-width effects [Campbell,Ellis,Nason,Re '14]
 - "bb4l": fully offshell, NLO corrections to resonant & nonresonant contributions [Ježo, Nason '15; Ježo, Lindert, Nason, Oleari, Pozzorini '16]
- study differences between these and the older (but routinely used today):
 - " $t\bar{t}$ ": NWA, NLO corrections in production only

NWA & Offshell $t\bar{t}$ matched to parton showers

- ightharpoonup sizeable differences in shape (10-50%) and normalization (\sim 10%) between $b\bar{b}4l$ and $t\bar{t}$ generators
- lacktriangleright much milder differences between $bar{b}4l$ and $tar{t}\otimes {
 m decay}$ generators
- these features are repeated for a number of observables
- even though offshell effects are modelled (\sim LO) in $t\bar{t}$ and $t\bar{t}\otimes {\rm decay}$ generators, it clear that to get close to full result when using an onshell approx., it is imperative to include corrections in decay

NWA & Offshell $t\bar{t}$ matched to parton showers

- ightharpoonup sizeable differences in shape (10-50%) and normalization (\sim 10%) between $bar{b}4l$ and $tar{t}$ generators
- lacktriangle much milder differences between $bar{b}4l$ and $tar{t}\otimes {
 m decay}$ generators
- these features are repeated for a number of observables
- even though offshell effects are modelled (\sim LO) in $t\bar{t}$ and $t\bar{t}\otimes {\rm decay}$ generators, it clear that to get close to full result when using an onshell approx., it is imperative to include corrections in decay

Summary & Outlook

- It is clear that at the stable-top level, theory for $t\bar{t}$ is at a high level of precision: NNLO-QCD, +NLO-EW, +resummation, and its potential for impactful applications using LHC data is huge!
- Fast re-evaluations of differential observables now possible via fastNLO interface, and there is an ongoing 'production line' of new runs, observables, K-factors, tables... all of which will be available at www.precision.hep.phy.cam.ac.uk
- Also clear, that certain unsettling aspects such as p_T -discrepancy (not fully gone away) & consistency b/w measurements still remain.
- ➤ To benefit maximally from precision stable-top theory (e.g. for PDF fits) such issues/features must be understood.
- ► Given non-trivial nature of higher-order corrections in decay, their effect on extrapolations to 'parton level' ought to be accounted for (this is a systematic error we currently don't have an estimate for).
- ► The tools to do this at high precision are already available.

Summary & Outlook

- It is clear that at the stable-top level, theory for $t\bar{t}$ is at a high level of precision: NNLO-QCD, +NLO-EW, +resummation, and its potential for impactful applications using LHC data is huge!
- Fast re-evaluations of differential observables now possible via fastNLO interface, and there is an ongoing 'production line' of new runs, observables, K-factors, tables... all of which will be available at www.precision.hep.phy.cam.ac.uk
- Also clear, that certain unsettling aspects such as p_T -discrepancy (not fully gone away) & consistency b/w measurements still remain.
- ➤ To benefit maximally from precision stable-top theory (e.g. for PDF fits) such issues/features must be understood.
- ► Given non-trivial nature of higher-order corrections in decay, their effect on extrapolations to 'parton level' ought to be accounted for (this is a systematic error we currently don't have an estimate for).
- ► The tools to do this at high_precision are already available.

Obrigado!