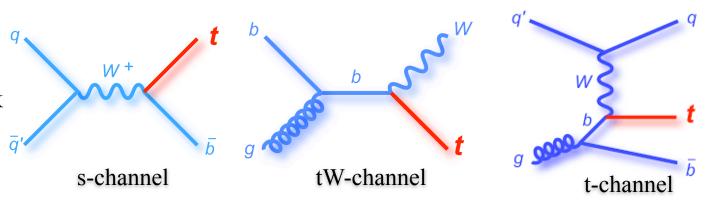
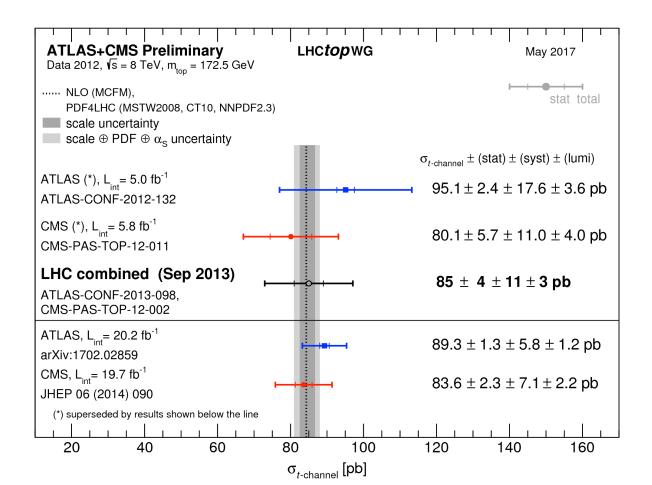


Single Top Quark Properties Measurements

On behalf of the ATLAS and CMS Collaborations

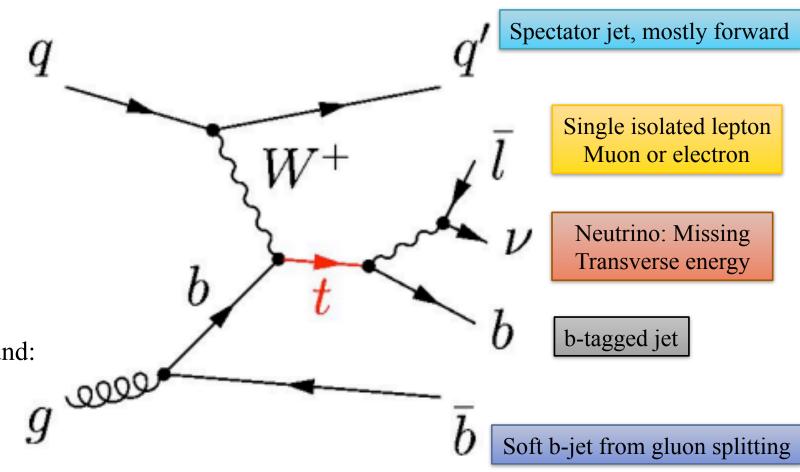
Reza Goldouzian


Université libre de Bruxelles


Top2017 - 10th International Workshop on Top Quark Physics 17-22 Sep 2017, Braga, Portugal

Physics with single top

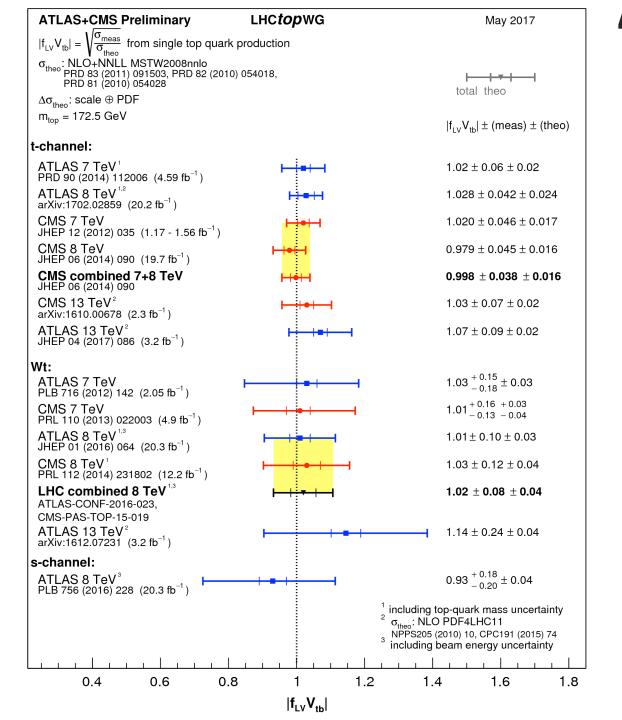
➤ Single top-quark production via electroweak interaction, involving a Wtb vertex



- ➤ Single top t-channel process
 - \triangleright Sensitive to $|V_{th}|$ (also for tW and s-channel)
 - ➤ Ratio top/antitop production is sensitive to the u/d quark ratio in the PDF sets
 - > Sensitive to b-quark PDF
 - > Sensitive to the top quark mass
 - > Sensitive to the Wtb interaction
 - > Sensitive to the top and W polarisation
 - > Sensitive to the new physics contributions

BASIC SELECTION (LEPTONIC DECAY)

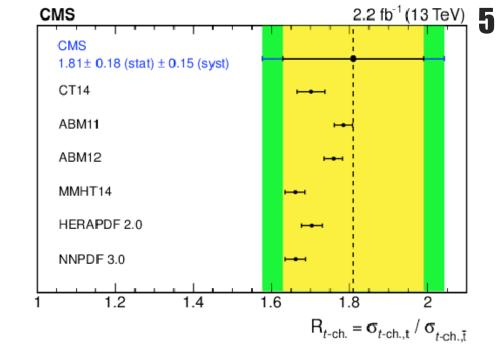
- > Event selection (t-channel)
 - ➤ One isolated lepton
 - ➤ Two jets, one b-tagged
 - > MET
- Background
 - > Top pair production
 - > QCD multijet
 - ➤ W+jets and Z+jets
- > Specific techniques to suppress background:
 - ➤ Boosted decision trees
 - > Neural networks
 - > Cut based techniques

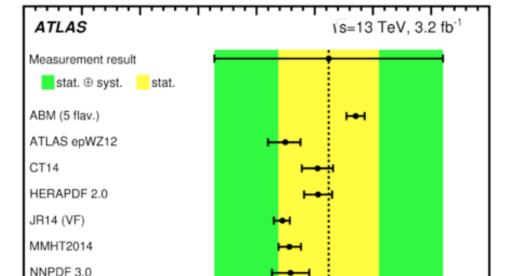


- \triangleright Single top quark productions has direct access to V_{tb}
- ➤ V_{tb} has been constrained in all t-channel and tW channel measurements
- > Assumptions:
 - $ightharpoonup BR(t \rightarrow Wb) \approx 1$
 - $\triangleright |V_{tb}| \gg |V_{td}|, |V_{ts}|$
 - $F_{LV} = 1$ for the SM

$$|f_{LV} \cdot V_{tb}| = \sqrt{\frac{\sigma_{t-chan.}^{meas.}}{\sigma_{t-chan.}^{theo.}}}$$

R, measurements


JHEP04(2017)086, Phys.Lett. B772 (2017) 752-776


- \triangleright R_t: ratio of top and anti-top in t-channel
- > Due to the different u and d quark density of the proton, top cross section is higher than anti top cross section
- \triangleright R_t is sensitive to PDF

ATLAS: $R_t = 1.72 \pm 0.09(stat.) \pm 0.18(syst.)$

CMS: $R_t = 1.81 \pm 0.18(stat.) \pm 0.15(syst.)$

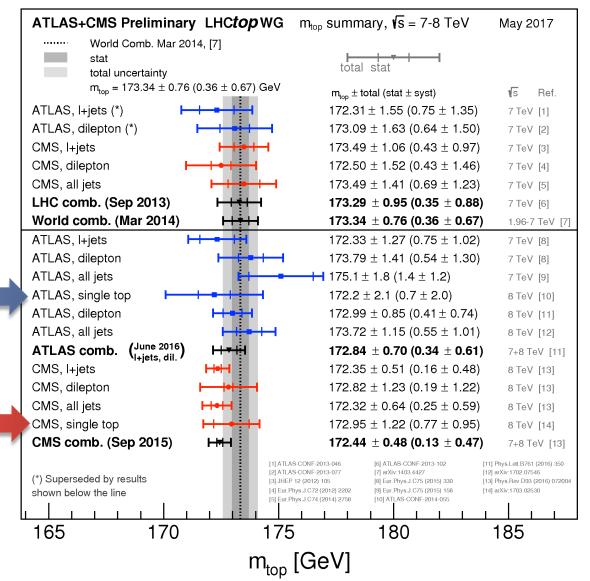
See Matthias's and Lidia's talks for more detail

1.9

1.5

Top mass measurement

ATLAS-CONF-2014-055, EPJC 77 (2017) 354


2012 data: $\sqrt{s} = 8$ TeV, L = 20.3 fb⁻¹ (ATLAS), 19.7 fb⁻¹ (CMS)

- Top quark mass is measured in topologies enhanced with single top t-channel
- The reconstructed lvb (lb) invariant mass distribution is fitted to extract the top mass in CMS (ATLAS) analysis

$$M_{top} = 172.2 \pm 0.7(stat.) \pm 2.0(syst.) \text{ GeV}$$

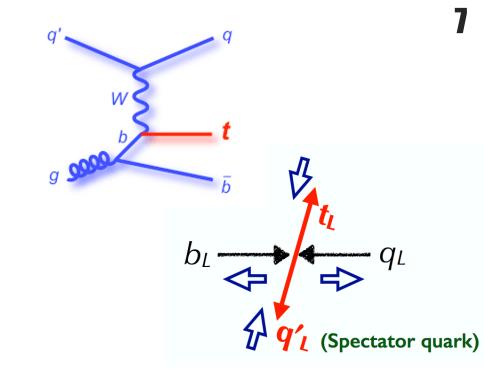
$$M_{top} = 172.95 \pm 0.77(stat.) \pm 0.95(syst.) GeV$$

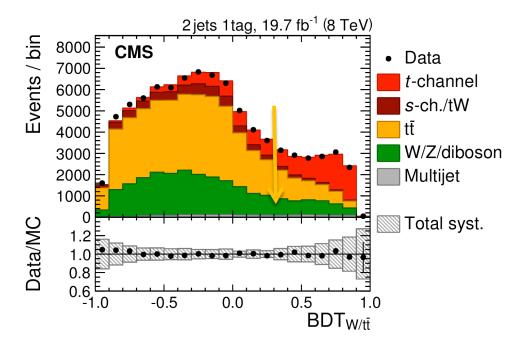
See Andrea's and Ben's talks for more detail

Top quark polarization

JHEP 04 (2016) 073

2012 data:
$$\sqrt{s} = 8$$
 TeV, $L = 19.7$ fb⁻¹

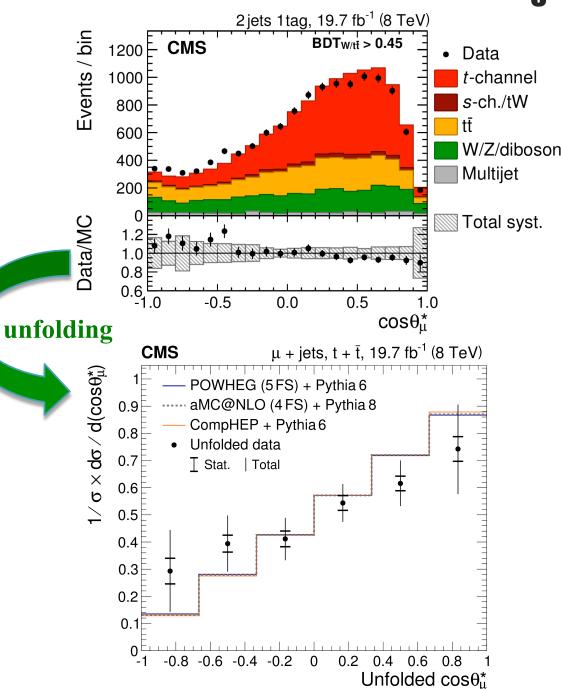

- ➤ V-A nature of the SM predicts large top polarization, P, along the direction of momentum of the spectator quark in the top rest frame
- > Distribution of top decay product with respect to this direction follows


$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta_X^*} = \left(\frac{1}{2} + A_X \cos\theta_X^*\right)$$

- \triangleright Where $A_X = \frac{1}{2} P_t \alpha_X$
 - \triangleright P_t: degree of polarization ~ 90% for spectator jet direction
 - $\triangleright \alpha_x$: spin analyzing power ~ 1 for lepton
- \triangleright Top polarization can be extracted from asymmetries (A_x)

$$A_X \equiv rac{1}{2} \, P_{
m t} \, lpha_X = rac{N(\uparrow) - N(\downarrow)}{N(\uparrow) + N(\downarrow)}$$

➤ BDT selects ~50% pure t-channel sample



Top quark polarization

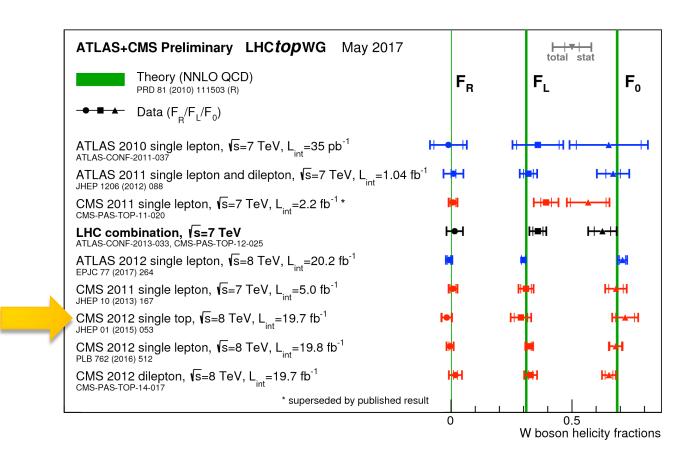
- \triangleright Reconstruct $\cos(\theta^*)$, subtract background (W+jets largest)
- ➤ Data is unfolded at parton level to correct for efficiency and resolution.
- ➤ Dominant systematics from JES and background subtraction
- ightharpoonup A smaller slope than expected is observed (SM predicts A μ = 0.44)

$$A_{\mu} = 0.26 \pm 0.03(stat.) \pm 0.10(syst.)$$

> Compatible with a p-value of 4.6% (equiv. to 2 sigma)

W helicity

JHEP 01 (2015) 053


2012 data:
$$\sqrt{s} = 8$$
 TeV, $L = 19.7$ fb⁻¹

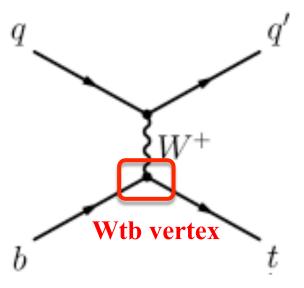
W from top decay is produced with different helicities, can be measured by θ .*: angle between W in top frame and lepton in W frame

$$\rho(\cos\theta_{\ell}^*) \equiv \frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\ell}^*} = \frac{3}{8} (1 - \cos\theta_{\ell}^*)^2 F_L + \frac{3}{4} \sin^2\theta_{\ell}^* F_0 + \frac{3}{8} (1 + \cos\theta_{\ell}^*)^2 F_R$$

- ightharpoonup In SM, $F_0 \sim 70\%$, $F_L \sim 30\%$, $F_R \sim 0$
- \succ F₀, F_R and F_L can be extracted through a fit to the $cos(\theta_1^*)$ distribution
- The left-handed and longitudinal polarizations are treated as free parameters in the fit
- Right-handed polarisation fraction is extracted from the condition: $F_L + F_0 + F_R = 1$

$$F_{\rm L} = 0.298 \pm 0.028 \, ({
m stat}) \pm 0.032 \, ({
m syst}),$$

 $F_{\rm 0} = 0.720 \pm 0.039 \, ({
m stat}) \pm 0.037 \, ({
m syst}),$
 $F_{\rm R} = -0.018 \pm 0.019 \, ({
m stat}) \pm 0.011 \, ({
m syst}),$


neg. direction of top

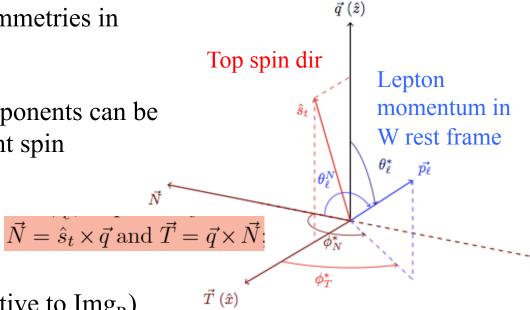
Anomalous Wtb interaction

- > Single top quark production process can be used to search for new physics
- ➤ General effective Lagrangian of Wtb vertex

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_{L} P_{L} + V_{R} P_{R}) t W_{\mu}^{-} - \frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu\nu} q_{\nu}}{m_{W}} (g_{L} P_{L} + g_{R} P_{R}) t W_{\mu}^{-} + \text{h.c.}$$

- \triangleright Anomalous couplings in the SM: $V_L = V_{tb}$; $V_R = g_L = g_R = 0$
- ➤ If anomalous couplings are non zero: evidence of new physics
- ➤ If imaginary part of anomalous coupling is non zero: evidence of CP violation
- The increased statistics for single-top at LHC allows measurement of multi differential decay rates of the top quark.

JHEP04 (2017) 124

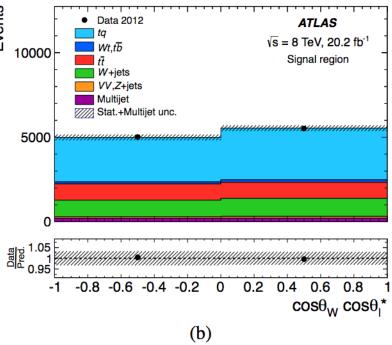

2012 data: $\sqrt{s} = 8$ TeV, L = 20.2 fb⁻¹

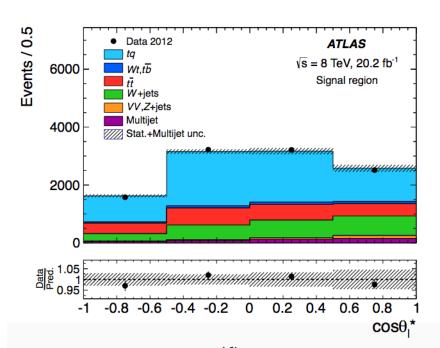
- Top and W polarization observables can be extracted from asymmetries in various angular distributions of the decay products.
- ➤ the spin-density matrix elements for the W-boson helicity components can be parameterised in terms of expectation values of six independent spin observables
- > In the SM

$$>$$
 $<$ S₃ $> = -0.31$ and $<$ T₀ $> = -0.43$ (related to W helicity)

- > <S₁> = 0.46 and <A₁> = 0.23 (related to top polarization)
- > <S₂> = 0 and <A₂> = 0 (related to top polarization sensitive to Img_R)

W momentum in top rest frame

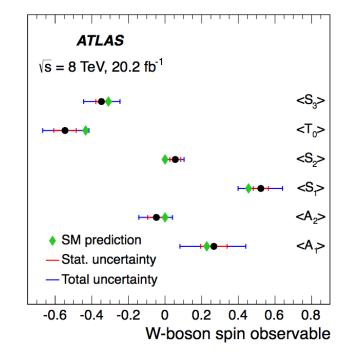

$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}(\cos\theta_{\ell}^{*})\mathrm{d}\phi_{\ell}^{*}} = \frac{3}{8\pi} \left\{ \frac{2}{3} + \frac{1}{\sqrt{6}} \langle T_{0} \rangle \left(3\cos^{2}\theta_{\ell}^{*} - 1 \right) + \langle S_{3} \rangle \cos\theta_{\ell}^{*} + \langle S_{1} \rangle \cos\phi_{\ell}^{*} \sin\theta_{\ell}^{*} + \langle S_{2} \rangle \sin\phi_{\ell}^{*} \sin\theta_{\ell}^{*} - \langle A_{1} \rangle \cos\phi_{\ell}^{*} \sin2\theta_{\ell}^{*} - \langle A_{2} \rangle \sin\phi_{\ell}^{*} \sin2\theta_{\ell}^{*} \right\}.$$

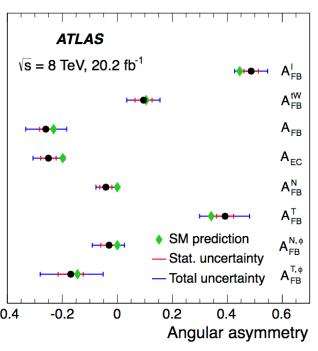


- > Selection cuts on $|\eta_j|$, $\Delta \eta(j,b)$, m(lvb), H_T(l,j,MET) are use to enrich the signal region
- ➤ The polarisation observables are extracted from asymmetries in angular distributions

$$A_{\rm FB} = \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N(\cos\theta > 0) + N(\cos\theta < 0)}, \qquad A_{\rm EC} = \frac{N(|\cos\theta| > \frac{1}{2}) - N(|\cos\theta| < \frac{1}{2})}{N(|\cos\theta| > \frac{1}{2}) + N(|\cos\theta| < \frac{1}{2})}.$$

Asymmetry	Angular observable	Polarisation observable	SM prediction
$A_{ ext{FB}}^{\ell}$	$\cos heta_\ell$	$rac{1}{2}lpha_\ell P$	0.45
$A_{ m FB}^{tW}$	$\cos heta_W\cos heta_\ell^*$	$\frac{3}{8}P(F_{\rm R}+F_{\rm L})$	0.10
$A_{ m FB}$	$\cos heta_\ell^*$	$\frac{3}{4}\langle S_3\rangle = \frac{3}{4}\left(F_{\rm R} - F_{\rm L}\right)$	-0.23
$A_{ m EC}$	$\cos heta_\ell^*$	$\frac{3}{8}\sqrt{\frac{3}{2}}\langle T_0\rangle = \frac{3}{16}(1-3F_0)$	-0.20
$A_{ m FB}^T$	$\cos heta_\ell^T$	$\frac{3}{4}\langle S_1 \rangle$	0.34
$A_{ m FB}^N$	$\cos heta_\ell^N$	$-\frac{3}{4}\langle S_2 \rangle$	0
$A_{ ext{FB}}^{T,\phi}$	$\cos heta_\ell^* \cos \phi_T^*$	$-\frac{2}{\pi}\langle A_1 \rangle$	-0.14
$A_{ ext{FB}}^{N,\phi}$	$\cos heta_\ell^*\cos\phi_N^*$	$\frac{2}{\pi}\langle A_2 \rangle$	0


- ➤ Measured angular distributions are unfolded at parton level after subtracting the background contributions
- > Angular asymmetries extracted from the unfolded distributions.
- ➤ Dominant sources of uncertainty: data statistics, t-channel and ttbar modeling and jet energy scale.
- > Results in agreement with the Standard Model predictions.


$$\alpha_\ell P = 0.97 \pm 0.05 ({\rm stat.}) \pm 0.11 ({\rm syst.}) = 0.97 \pm 0.12 \,,$$

$$P(F_{\rm R} + F_{\rm L}) = 0.25 \pm 0.08 ({\rm stat.}) \pm 0.14 ({\rm syst.}) = 0.25 \pm 0.16 \,.$$

 \triangleright Limits on Im (g_R) extracted by combining two particular asymmetries: $A_{FB}{}^{I}$ and $A_{FB}{}^{N}$

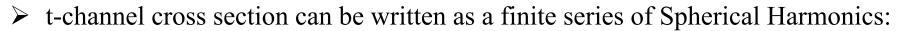
Im
$$(g_R)$$
: [-0.18, 0.06]

See Nuno's talk for more details

Top spin dir

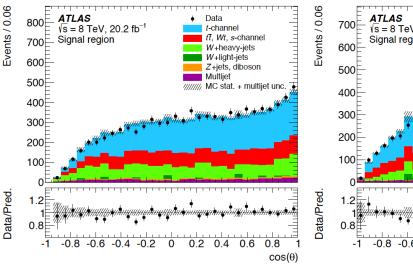
Lepton

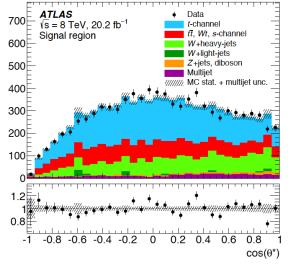
momentum ir

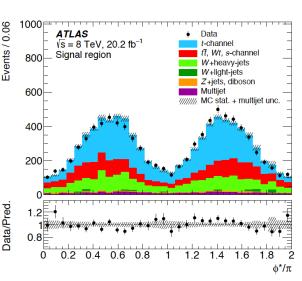

-W-rest frame

Triple-differential angular decay rates W momentum in top rest frame

arXiv:1707.05393 - submitted to JHEP

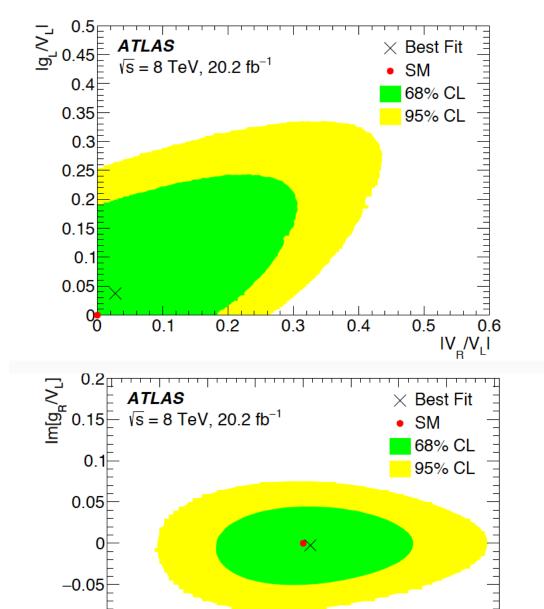

2012 data: $\sqrt{s} = 8$ TeV, L = 20.2 fb⁻¹




$$\varrho(\theta, \theta^*, \phi^*; P) = \frac{1}{N} \frac{\mathrm{d}^3 N}{\mathrm{d}(\cos \theta) \mathrm{d}\Omega^*} = \sum_{k=0}^{1} \sum_{l=0}^{2} \sum_{m=-k}^{k} a_{k,l,m} M_{k,l}^m(\theta, \theta^*, \phi^*),$$

$$M_{k,l}^m(\theta,\theta^*,\phi^*) = \sqrt{2\pi}Y_k^m(\theta,0)Y_l^m(\theta^*,\phi^*).$$

- The model is based on the angles θ , θ^* and ϕ^*
- An angular analysis of the triple-differential decay rate is performed in order to determine generalised helicity fractions and phases, as well as the polarisation of the produced top quark.



- > Systematics are dominated by MC event generators and JES
- > Statistics are also dominating the total error
- > Search is only sensitive to coupling ratios
- ➤ All of the measured values are in agreement with the SM expectations.

$$\operatorname{Re}\left[\frac{g_{\mathrm{R}}}{V_{\mathrm{L}}}\right] \in [-0.12, 0.17] \quad \text{and} \quad \operatorname{Im}\left[\frac{g_{\mathrm{R}}}{V_{\mathrm{L}}}\right] \in [-0.07, 0.06].$$

$$|V_{\mathrm{R}}/V_{\mathrm{L}}| < 0.37 \qquad (95\% \text{ CL}),$$

$$|g_{\mathrm{L}}/V_{\mathrm{L}}| < 0.29 \qquad (95\% \text{ CL}),$$

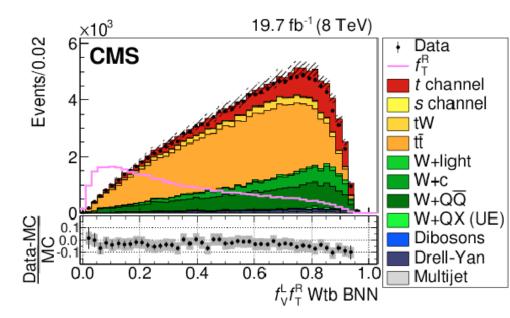
➤ A three angle analysis is needed to fully describe the top production (polarization) and decay

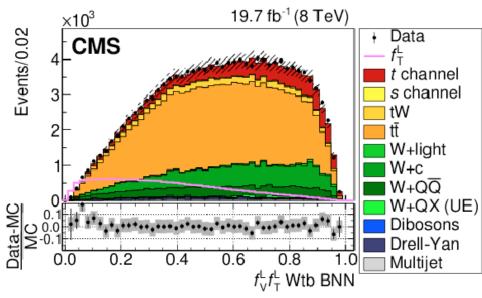
See Nuno's talk for more details

-0.1

Anomalous Wtb interaction

JHEP 02 (2017) 028

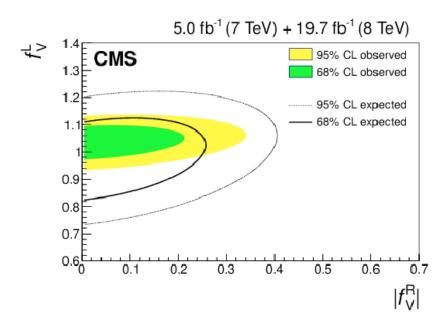

2011 data:
$$\sqrt{s} = 7$$
 TeV, $L = 5$ fb⁻¹

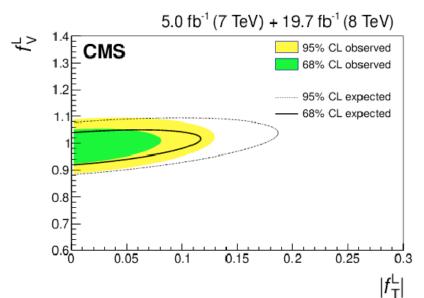

2012 data:
$$\sqrt{s} = 8$$
 TeV, $L = 19.7$ fb⁻¹

> A search for anomalous Wtb interactions at 7 and 8 teV

$$\mathfrak{L}=rac{g}{\sqrt{2}}ar{b}\gamma^{\mu}\left(f_{\mathrm{V}}^{\mathrm{L}}P_{\mathrm{L}}+f_{\mathrm{V}}^{\mathrm{R}}P_{\mathrm{R}}
ight)\mathrm{t}W_{\mu}^{-}-rac{g}{\sqrt{2}}ar{b}rac{\sigma^{\mu\nu}\partial_{
u}W_{\mu}^{-}}{M_{\mathrm{W}}}\left(f_{\mathrm{T}}^{\mathrm{L}}P_{\mathrm{L}}+f_{\mathrm{T}}^{\mathrm{R}}P_{\mathrm{R}}
ight)\mathrm{t}+\mathrm{h.c.},$$

- > Only muon channel is analyzed
- A neural network for rejecting QCD events is used
- Three dedicated neural network for separating events from anomalous interaction from SM events are used
 - \rightarrow (f_V^L, f_V^R)
 - \rightarrow (f_V^L, f_T^L)
 - \rightarrow (f_V^L, f_T^R)
- Also stringent limits on top-quark-gluon FCNC couplings are set using dedicated neural networks (See Kirill's talk).





Anomalous Wtb interaction

- The presence of anomalous Wtb couplings in both the production and decay of the top quark is considered
- Two and three of four anomalous couplings are considered simultaneously in two and three dimensional scenarios
- Limits are extracted from a simultaneous fit to the SM BNN and anomalous Wtb BNNs outputs
- Only real parts are constrained

Scenario	$f_{ m V}^{ m L} >$	$ f_{\mathrm{V}}^{\mathrm{R}} <$	$ f_{\mathrm{T}}^{\mathrm{L}} <$	$ $ $< f_{\rm T}^{\rm R}$	3 <		
$\sqrt{s} = 7$ and 8 TeV							
$(f_{\mathrm{V}}^{\mathrm{L}},f_{\mathrm{V}}^{\mathrm{R}})$	0.97 (0.92)	0.28 (0.31)					
$(f_{\mathrm{V}}^{\mathrm{L}},f_{\mathrm{T}}^{\mathrm{L}})$	0.92 (0.92)		0.10 (0.14)				
$(f_{\mathrm{V}}^{\mathrm{L}},f_{\mathrm{T}}^{\mathrm{R}})$	0.94 (0.93)			-0.046 (-0.050)	0.046 (0.041)		
$(f_{\mathrm{V}}^{\mathrm{L}}, f_{\mathrm{T}}^{\mathrm{L}}, f_{\mathrm{T}}^{\mathrm{R}})$	0.98 (0.97)		0.057 (0.10)	-0.049 (-0.051)	0.048 (0.046)		
$(f_{\mathrm{V}}^{\mathrm{L}},f_{\mathrm{V}}^{\mathrm{R}},f_{\mathrm{T}}^{\mathrm{R}})$	0.98 (0.97)	0.16 (0.22)		-0.049 (-0.049)	0.039 (0.037)		

summary

- > The ATLAS and CMS experiments have deeply studied the top quark properties in single-top production
- ➤ Unique features of the electroweak top quark production are exploited in order to search for new physics in Wtb interaction
- \triangleright Strong limits are set to the Wtb anomalous couplings, especially imaginary part of g_R coupling
- > The top-quark polarization has been measured by both experiments using single top events
- Large cross section of the single top t-channel and tW-channel at the 13 TeV LHC and larger statistics in Run-2 datasets allow us to measure top properties more precisely.

Thanks for your attention