Outline

- Indirect measurement of the top quark pole mass ($m_{\text{pole}}^{\text{top}}$) from lepton differential cross-sections
 - In a well-defined renormalization scheme
Outline

- Indirect measurement of the top quark pole mass ($m_{\text{top}}^{\text{pole}}$) from lepton differential cross-sections
 - In a well-defined renormalization scheme

- Overview of direct m_{top} measurements at 8 TeV in the
 - $t\bar{t} \rightarrow$ all-jets channel,
 - $t\bar{t} \rightarrow$ dilepton channel, and
 - t-channel of single-top-quark production

ATLAS Preliminary
m_{top} summary - May 2017, $L_{\text{int}} = 4.6$ fb$^{-1}$ - 20.3 fb$^{-1}$

- all jets: $E_{\text{T}} = 6.9$ fb$^{-1}$
- single top*: COF0 2014-01
 - $L_{\text{int}} = 20.3$ fb$^{-1}$
- $t\bar{t}$-jets: ATLAS 2012-010
 - $L_{\text{int}} = 4.7$ fb$^{-1}$
- dilepton: ATLAS 2013-020
 - $L_{\text{int}} = 20.2$ fb$^{-1}$
- dilepton: ATLAS 2013-020
 - $L_{\text{int}} = 20.2$ fb$^{-1}$
- all jets: ATLAS 2017-015
 - $L_{\text{int}} = 30.2$ fb$^{-1}$

- ATLAS Comb. June 2016: $E_{\text{T}} = 6.9$ fb$^{-1}$
 - $m_{\text{top}}^{\text{pole}}$:
 - $m_{\text{top}} = 172.9 \pm 0.5^{+0.5}_{-0.4}$
 - $m_{\text{top}} = 173.7 \pm 0.3^{+0.3}_{-0.1}$

- ATLAS Comb. ± 1σ
 - stat. uncertainty
 - stat. ± JSF ± bJSF ± syst. uncertainty
 - total uncertainty

*Preliminary, → Input to comb.
Outline

- Indirect measurement of the top quark pole mass ($m_{\text{pole}}^{\text{top}}$) from lepton differential cross-sections
 - In a well-defined renormalization scheme

- Overview of direct m_{top} measurements at 8 TeV in the
 - $t\bar{t} \rightarrow \text{all-jets channel}$,
 - $t\bar{t} \rightarrow \text{dilepton channel}$, and
 - t-channel of single-top-quark production

- New measurement of m_{top} in the
 - $t\bar{t} \rightarrow \text{lepton+jets channel}$ at 8 TeV

- New ATLAS combination of m_{top}

Conclusions and remarks
Example distribution: $p_T^{e\mu}$

- Using $t\bar{t} \rightarrow e\mu + X$ events, measure several lepton/dilepton differential distributions

 - p_T^ℓ, $|\eta^\ell|$, $p_T^{e\mu}$, $m^{e\mu}$, $|y^{e\mu}|$, $\Delta\phi^{e\mu}$, $p_T^e + p_T^\mu$, and $E^e + E^\mu$
Example distribution: $p_T^{e\mu}$

- Using $t\bar{t} \rightarrow e\mu + X$ events, measure several lepton/dilepton differential distributions:
 - p_T^{ℓ}, $|\eta^{\ell}|$, $p_T^{e\mu}$, $m^{e\mu}$, $|y^{e\mu}|$, $\Delta \phi^{e\mu}$, $p_T^{e} + p_T^{\mu}$, and $E^e + E^\mu$

- Both m_{top} and $m_{\text{top}}^{\text{pole}}$ can be determined using normalized particle-level distributions
Example distribution: $p_T^{e\mu}$

$p_T^{e\mu}$ sensitivity to m_{top}

Fixed-order prediction/data

- Using $t\bar{t} \rightarrow e\mu + X$ events, measure several lepton/dilepton differential distributions
 - p_T^ℓ, $|\eta^\ell|$, $p_T^{e\mu}$, $m^{e\mu}$, $|y^{e\mu}|$, $\Delta \phi^{e\mu}$, $p_T^e + p_T^\mu$, and $E^e + E^\mu$

- Both m_{top} and $m_{\text{top}}^{\text{pole}}$ can be determined using normalized particle-level distributions

- The data are described by fixed-order predictions, within uncertainties
m_{top} results (in a well-defined renormalization scheme) are extracted from the measured distributions by fits to the fixed-order NLO QCD predictions.

A combined fit with all distributions (constraining PDF and QCD scale unc.) results in:

$$m_{\text{top}} = 173.2 \pm 0.9 \text{ (stat)} \pm 0.8 \text{ (syst)} \pm 1.2 \text{ (theo)} \text{ GeV} = 173.2 \pm 1.6 \text{ GeV}$$

The theory uncertainty is dominated by QCD scale variations (1.1 GeV).
Direct measurement template methods

The direct measurements of m_{top} at 8 TeV in ATLAS all use the template method

- Distributions of variables that are sensitive to m_{top} are fit to analytical functions at several discrete values of the input m_{top}
- These functions are then parameterized as functions of the input m_{top}

Single-top: m_{lb}

All-hadronic: $R_{3/2} = \frac{m_{jjj}}{m_{jj}}$

Dilepton: m_{lb}
Direct measurement optimization strategies

- Single-top
 - Use a neural network (NN) to better distinguish between signal and background events
 - Choose a cut on the NN output to obtain a t-channel purity of 50%

ATLAS Preliminary

2 Jets SR electrons + muons

- DATA
- $t\bar{t}$
- Wt, s-channel
- W+jets
- Z+jets, diboson
- Multijets
- uncertainty

$L_{dt} = 20.3 \text{ fb}^{-1}$
Direct measurement optimization strategies

- Single-top
 - Use a neural network (NN) to better distinguish between signal and background events
 - Choose a cut on the NN output to obtain a \(t \)-channel purity of 50%

- All-hadronic \(\text{arXiv:1702.07546} \)
 - Use the \(R_{3/2} \) distribution as the estimator for \(m_{\text{top}} \) instead of \(m_{jjj} \)
 - More protected from variations in the JES: \(R_{3/2} = \frac{m_{qqb}}{m_{qq}} \propto \frac{\text{JES} \cdot b\text{JES}}{\text{JES}} \)
Direct measurement optimization strategies

- **Single-top**
 - Use a neural network (NN) to better distinguish between signal and background events
 - Choose a cut on the NN output to obtain a t-channel purity of 50%

- **All-hadronic**
 - Use the $R_{3/2}$ distribution as the estimator for m_{top} instead of m_{jjj}.
 - More protected from variations in the JES: $R_{3/2} = \frac{m_{qqb}}{m_{qq}} \propto \frac{JES_b \cdot JES}{JES}$

- **Dilepton.**
 - Optimize a cut on $p_{T,lb}$ to minimize the total uncertainty
Direct measurement results in data

Finally, a fit is applied to the observed data to extract m_{top}

Single-top: binned max-LH

All-hadronic: binned min-χ^2

Dilepton: unbinned max-LH

$m_{\text{top}} = 172.2 \pm 0.7\,\text{(stat)} \pm 2.0\,\text{(syst)}\,\text{GeV}$

$m_{\text{top}} = 173.72 \pm 0.55\,\text{(stat)} \pm 1.01\,\text{(syst)}\,\text{GeV}$

$m_{\text{top}} = 172.99 \pm 0.41\,\text{(stat)} \pm 0.74\,\text{(syst)}\,\text{GeV}$
Direct measurement dominant systematic uncertainties (Δm_{top} [GeV])

- **Single-top.**
 - JES (1.5) and t-channel hadronisation (0.7)
 - Total uncertainty: 2.1 GeV (1.2%)
Direct measurement dominant systematic uncertainties (Δm_{top} [GeV])

- **Single-top**
 - JES (1.5) and t-channel hadronisation (0.7)
 - Total uncertainty: **2.1 GeV** (1.2%)

- **All-hadronic.**
 - JES (0.60), hadronisation (0.64), and bJES (0.34)
 - Total uncertainty: **1.15 GeV** (0.66%)

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Δm_{top} [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monte Carlo generator</td>
<td>0.18 ± 0.21</td>
</tr>
<tr>
<td>Hadronisation modelling</td>
<td>0.64 ± 0.15</td>
</tr>
<tr>
<td>Parton distribution functions</td>
<td>0.04 ± 0.00</td>
</tr>
<tr>
<td>Initial/final-state radiation</td>
<td>0.10 ± 0.28</td>
</tr>
<tr>
<td>Underlying event</td>
<td>0.13 ± 0.16</td>
</tr>
<tr>
<td>Colour reconnection</td>
<td>0.12 ± 0.16</td>
</tr>
<tr>
<td>Bias in template method</td>
<td>0.06</td>
</tr>
<tr>
<td>Signal and bkgd parameterisation</td>
<td>0.09</td>
</tr>
<tr>
<td>Non all-hadronic $t\bar{t}$ contribution</td>
<td>0.06</td>
</tr>
<tr>
<td>ABCD method vs. ABCDEF method</td>
<td>0.16</td>
</tr>
<tr>
<td>Trigger efficiency</td>
<td>0.08 ± 0.01</td>
</tr>
<tr>
<td>Lepton/E_T^{miss} calibration</td>
<td>0.02 ± 0.01</td>
</tr>
<tr>
<td>Overall flavour-tagging</td>
<td>0.10 ± 0.00</td>
</tr>
<tr>
<td>Jet energy scale (JES)</td>
<td>0.60 ± 0.05</td>
</tr>
<tr>
<td>b-jet energy scale (bJES)</td>
<td>0.34 ± 0.02</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>0.10 ± 0.04</td>
</tr>
<tr>
<td>Jet vertex fraction</td>
<td>0.03 ± 0.01</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>1.01</td>
</tr>
<tr>
<td>Total statistical uncertainty</td>
<td>0.55</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>1.15</td>
</tr>
</tbody>
</table>
Direct measurement dominant systematic uncertainties (Δm_{top} [GeV])

- **Single-top**
 - JES (1.5) and t-channel hadronisation (0.7)
 - Total uncertainty: **2.1 GeV** (1.2%)

- **All-hadronic**
 - JES (0.60), hadronisation (0.64), and bJES (0.34)
 - Total uncertainty: **1.15 GeV** (0.66%)

- **Dilepton.**
 - JES (0.54), relative b-to-light JES (0.30), hadronisation (0.22), and ISR/FSR (0.23)
 - Total uncertainty: **0.84 GeV** (0.49%)
Direct measurement dominant systematic uncertainties (Δm_{top} [GeV])

- **Single-top**
 - JES (1.5) and t-channel hadronisation (0.7)
 - Total uncertainty: **2.1 GeV** (1.2%)

- **All-hadronic**
 - JES (0.60), hadronisation (0.64), and bJES (0.34)
 - Total uncertainty: **1.15 GeV** (0.66%)

- **Dilepton**
 - JES (0.54), relative b-to-light JES (0.30), hadronisation (0.22), and ISR/FSR (0.23)
 - Total uncertainty: **0.84 GeV** (0.49%)
New results

Measurement of m_{top} in the lepton+jets channel at 8 TeV and a combination with previous ATLAS measurements

TIME FOR SOMETHING NEW!
Use the 3-D template method developed in the 7 TeV lepton+jets analysis

- Templates constructed from distributions of $m_{\text{top}}^{\text{reco}}$, m_{W}^{reco}, and R_{bq}^{reco}

$$R_{bq}^{\text{reco}} = \frac{p_{T}^{b_{\text{had}}} + p_{T}^{b_{\text{lep}}}}{p_{T}^{q_1} + p_{T}^{q_2}}, \text{ where } q_1 \text{ and } q_2 \text{ are the light jets assigned to the } W \text{ boson}$$

A 3D unbinned maximum likelihood fit of these templates is applied to the observed data to extract the measured m_{top}, JSF, and bJSF

The simultaneous measurement of m_{top} with a jet energy scale factor (JSF) and a relative b-to-light-jet energy scale factor (bJSF) reduces the sizeable JES and bJES uncertainties in m_{top}
Require **one** high-p_T electron or muon along with **at least four** high-p_T central jets
- Exactly **two** of these jets must be **b-tagged**

Use a kinematic likelihood fitter (KLFitter) for jet-parton assignment and to obtain $m_{\text{reco}}^{\text{top}}$

- $m_{\text{reco}}^{\text{top}}$ reconstructed within the KLFitter
- m_{reco}^{W} and R_{reco}^{bq} use the chosen jet permutation from KLFitter, but the original jet momentum 4-vectors
 - in order to retain the maximum sensitivity to JES and bJES
Idea:
- Remove wrongly/unmatched events, expected to have larger systematic uncertainties

Method:
- Train a BDT algorithm to distinguish these events from correctly matched events
- Make a cut on the BDT output (r_{BDT})

- 13 variables are used as inputs to the BDT
- The two with by far the greatest separation power are
 - the KLFitter likelihood of the best permutation
 - the angular separation of the two untagged jets from the hadronically decaying W boson ($\Delta R(q, q)$)
The BDT is trained on $t\bar{t}$ signal MC

- Good separation of the event categories

A scan of the cut on r_{BDT} around the crossing point of 0 is performed

- Run complete analysis for each point in the scan to compare the total uncertainty in m_{top}

A cut of $r_{\text{BDT}} \geq -0.05$ results in the smallest total uncertainty
After applying the r_{BDT} cut, the background fraction is only 1%.

Single-top-quark production is included in signal:
 - resulting in a background independent of m_{top}

Distributions of fit variables agree well with data within uncertainties:
 - MC simulation is normalised to the data and only shape uncertainties remain in the band.
Simulated distributions of $m_{\text{top}}^{\text{reco}}$, m_{W}^{reco}, and R_{bq}^{reco} are fit to analytical functions which are parameterised as functions of the input m_{top}, JSF, and bJSF depending on sensitivity:

- $m_{\text{top}}^{\text{reco}}$ (m_{top}, JSF, bJSF) strong to all three
- m_{W}^{reco} (JSF) strong to JSF, negligible to m_{top} and bJSF
- R_{bq}^{reco} (m_{top}, JSF, bJSF) strong to bJSF, weak to m_{top} and JSF
The 3D unbinned maximum likelihood fit to the data results in:

\[m_{\text{top}} = 172.08 \pm 0.39 \text{(stat)} \text{ GeV} \quad \text{JSF} = 1.005 \pm 0.001 \text{(stat)} \quad \text{bJSF} = 1.008 \pm 0.005 \text{(stat)} \]

Including systematic uncertainties, the result is:

\[m_{\text{top}} = 172.08 \pm 0.39 \text{(stat)} \pm 0.82 \text{(syst)} \text{ GeV} = 172.08 \pm 0.91 \text{ GeV} \]
Dominant sources of uncertainty
- JES (0.54 GeV) and b-tagging (0.38 GeV)

Total uncertainty reduced with BDT sel.
- 19% improvement over no BDT at 8 TeV
- Reduces theory modelling uncertainties
- Also improves resolution in m_{top} as seen by the scaling of the stat. unc.
 - With no improvement in resolution:
 \[
 \sigma_{\text{BDT}}^{\text{stat}} = \sigma_{\text{std}}^{\text{stat}} \sqrt{N_{\text{std}}/N_{\text{BDT}}} = 0.60
 \]
 as compared to 0.39
- Altogether, a 29% improvement over the 7 TeV lepton+jets measurement

Given the new result, an updated ATLAS combination is performed
Combination: correlations of pairs of estimators

-lepton+jets (8 TeV) vs. dilepton (8 TeV)

-lepton+jets (8 TeV) vs. lepton+jets (7 TeV)

- Pairwise Δm_{top} when simultaneously varying a pair of measurements for each syst. unc.
- The correlations of the estimators for each uncertainty component are evaluated
- The combination is performed using the BLUE method

ATLAS Preliminary
Combined value (left) and uncertainty (right) in the combination of the two 8 TeV measurements as a function of their total correlation (blue line)

- The red and gray lines indicate the pair of input values (left) and uncertainties (right)
- The uncertainty in the combined \(m_{\text{top}}\) strongly depends on the total correlation
This combination results in a precision of 0.29%:

\[m_{\text{top}} = 172.51 \pm 0.27\text{(stat)} \pm 0.42\text{(syst)} \text{ GeV} = 172.51 \pm 0.50 \text{ GeV} \]

- a 41% improvement w.r.t. the most precise single input measurement
- a 29% improvement w.r.t. the previous ATLAS combination
Conclusions and remarks

- An indirect measurement of $m_{\text{top}}^{\text{pole}}$ has been made using lepton differential cross-sections.
- Direct measurements of m_{top} have been made using the 8 TeV ATLAS data in all $t\bar{t}$ decay channels as well as in the t-channel of single-top-quark production.
- **New** 8 TeV measurement of m_{top} in the $t\bar{t} \rightarrow \text{lepton+jets}$ channel:
 \[m_{\text{top}}^{1+\text{jets}} = 172.08 \pm 0.91 \text{ GeV} \]
- **New** ATLAS combination of m_{top}:
 \[m_{\text{top}}^{\text{comb}} = 172.51 \pm 0.50 \text{ GeV (0.29\%)} \]
 - The two LHC combinations of m_{top} are consistent and have comparable precision.
- Take-away messages from 8 TeV:
 - Trade statistical for systematic precision to achieve a reduced total uncertainty.
 - Keep the combination in mind and **minimize the correlation** between individual measurements whenever possible.
- Looking forward to m_{top} results from 13 TeV data!
<table>
<thead>
<tr>
<th>Separation</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31%</td>
<td>$\ln L$</td>
<td>Logarithm of the likelihood of best permutation</td>
</tr>
<tr>
<td>13%</td>
<td>$\Delta R(q, q)$</td>
<td>ΔR of the two untagged jets from the hadronically decaying W boson</td>
</tr>
<tr>
<td>5.0%</td>
<td>$p_T(W_{\text{had}})$</td>
<td>p_T of hadronically decaying W boson</td>
</tr>
<tr>
<td>4.3%</td>
<td>$p_{T,\text{had}}$</td>
<td>p_T of hadronically decaying top quark</td>
</tr>
<tr>
<td>4.2%</td>
<td>$P_{E\text{vt}}$</td>
<td>Event probability of best permutation</td>
</tr>
<tr>
<td>2.0%</td>
<td>$p_T(t\bar{t})$</td>
<td>p_T of reconstructed $t\bar{t}$ system</td>
</tr>
<tr>
<td>1.7%</td>
<td>$p_{T,\text{lep}}$</td>
<td>p_T of leptonically decaying top quark</td>
</tr>
<tr>
<td>1.2%</td>
<td>m_T^W</td>
<td>Transverse mass of leptonically decaying W boson</td>
</tr>
<tr>
<td>0.3%</td>
<td>$p_T(W_{\text{lep}})$</td>
<td>p_T of leptonically decaying W boson</td>
</tr>
<tr>
<td>0.3%</td>
<td>N_{jets}</td>
<td>Number of jets</td>
</tr>
<tr>
<td>0.2%</td>
<td>$\Delta R(b, b)$</td>
<td>ΔR of reconstructed b-tagged jets</td>
</tr>
<tr>
<td>0.2%</td>
<td>E_T^{miss}</td>
<td>Missing transverse momentum</td>
</tr>
<tr>
<td>0.1%</td>
<td>p_T,ℓ</td>
<td>p_T of lepton</td>
</tr>
</tbody>
</table>
8 TeV lepton+jets: data/MC agreement in BDT output

\[\text{BDT} \]

\[r = 0.6 - 0.4 - 0.2 - 0 \]

\[0.2 0.4 \]

\[\text{Data/MC} \]

\[0.8 1 1.2 \]

\[\text{Events / 02} \]

\[1000 2000 3000 4000 5000 6000 7000 \]

\[= 8 \text{ TeV}, 20.2 \text{ fb}^{-1} \]

\[\text{ATLAS Preliminary} \]

\[\sqrt{s} = 8 \text{ TeV}, 20.2 \text{ fb}^{-1} \]

\[\text{Top mass in ATLAS} \]

\[\text{Braga, Portugal} \]

\[19 \text{ September 2017} \]