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Top and Naturalness

The top quark plays a central role for Naturalness

The guiding principle: The Hierarchy Problem

The SM is based on a minimal implementation of the Higgs
mechanism

I good agreement with the experiments
I but quantum corrections destabilize the Higgs potential

The presence of particles coupled to the Higgs induces divergent
contributions to the Higgs mass

‚ largest e↵ects from top loops
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‣ it induces the largest SM loop corrections to the Higgs mass

The guiding principle: The Hierarchy Problem

The SM is based on a minimal implementation of the Higgs
mechanism

I good agreement with the experiments
I but quantum corrections destabilize the Higgs potential

The presence of particles coupled to the Higgs induces divergent
contributions to the Higgs mass
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In theories with a large cut-off                   a sizable cancellation
is needed to keep the Higgs mass small

⇤uv � TeV



            Residual tuning

Top and Naturalness

Solving the Naturalness Problem has been one of the main 
guidelines to go beyond the SM

The basic idea: new physics can screen the top loop

How to solve the Hierarchy Problem

Solving the Hierarchy Problem has been the main guideline to go
beyond the Standard Model

Main idea: new physics can screen the top loop
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Necessary condition: low new physics scale ⇤NP . TeV

‚ accessible at the LHC!
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Necessary ingredient: low new physics scale ⇤np . TeV

‣ possibly within the LHC reach!
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The composite Higgs solution

A strongly-coupled solution:  Higgs as a composite state [Georgi, Kaplan]

lH
‣ corrections to        screened at the  

compositeness scale ~ TeV
mh

Compelling features:

‣ new strongly-coupled sector

‣ Higgs as a Goldstone boson from spontaneously broken global 
symmetry (useful to keep Higgs couplings and EW parameters under control)



ρ,ψ

composite sector

h‣ resonances at m ~ TeV  
(massive vectors and heavy fermions)

The composite Higgs solution

Phenomenological consequences:

‣ deviations in Higgs couplings



‣ resonances at m ~ TeV  
(massive vectors and heavy fermions)

ρ,ψ

composite sector

h

sector
elementary

qL, uR, dR

Wµ, Bµ

The composite Higgs solution

Phenomenological consequences:

‣ deviations in Higgs couplings

Resonances are coupled with SM states

‣ largest mixing with top quark

‣ crucial role in naturalness        light top partners

top partners

sizable top compositeness 
(deviations in top couplings)



Top partners



Top partners phenomenology
Main properties:

‣ custodial fourplet

Minimal multiplets:

‣ custodial singlet
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‣ sizable couplings to top

‣ exotic states are the lightest

‣ sizable couplings to bottom

X2/3

X5/3

T

B

spectrum

‣ colored states (usually QCD triplets)

‣ charged under EW (fill extended multiplets due to custodial symmetry)



Top partners phenomenology
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Single production with t or b

‣ model independent
‣ more relevant at low mass

‣ model dependent
‣ potentially relevant at high masses
‣ production with b dominant when allowed



Bounds from direct searches
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Future runs can test multi-TeV resonances
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[Matsedonskyi, GP,  Wulzer ’15]

‣ completely probe parameter space with low tuning:   1/Δ ≳ few %

dashed lines show 
amount of tuning Δ
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Impact on explicit models

In a large class of minimal models (eg. MCHM4,5,10) the mass of the 
lightest partner is tightly connected to the compositeness scale f

[Matsedonskyi, G. P., Wulzer ; Marzocca, Serone, Shu; Pomarol, Riva] 

Current exclusions:
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‣ rule-out almost completely  𝜉 > 0.1

‣ push minimal tuning below 10% level
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Impact on explicit models

In a large class of minimal models (eg. MCHM4,5,10) the mass of the 
lightest partner is tightly connected to the compositeness scale f

[Matsedonskyi, G. P., Wulzer ; Marzocca, Serone, Shu; Pomarol, Riva] 

Current exclusions:
‣ rule-out almost completely  𝜉 > 0.1

‣ push minimal tuning below 10% level

High-luminosity reach:
‣ completely probe  𝜉 > 0.05
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Top couplings



The top couplings

Important consequences of top and Higgs compositeness are 
deviations in the top couplings

Main effects:

✦ modification of top Yukawa 
(due to Higgs compositeness)

✦ modification of gauge couplings 
(due to vector res. and mixing with partners)

✦ effective 4-fermion contact interactions 
(mediated by heavy resonances)



Modification of Higgs couplings

Couplings to gauge fields and quarks 
can be tested in Higgs physics
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The Higgs compositeness induces modification of Higgs couplings

✦ coupling to gauge fields

✦ Yukawa’s

‣ universal, determined by symmetry:  eg. SO(5)/SO(4)   ) kV =
p

1� ⇠

‣ depends on partners quantum numbers:      eg. MCHM5 

                                                                   MCHM4
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‣ current bounds ⇠ . 0.1

‣ possible deviation in top Yukawa

[GP,  Wulzer 1506.01961]

[ATLAS Collab. 1509.00672]
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Modification of gauge couplings
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Modifications in the gauge couplings are 
induced by vector resonances and top partners

�gZtL , �gZtR ⇠ ⇠ . 10%

✦ modifications of             coupling very difficult to test  
(at present basically unconstrained)

ZtRtR

✦ modifications of             already constrainedZtLtL |�gZtL | . 8%
[Efrati, Falkowski, Soreq ’15]

can have some impact on exclusions



Z and W couplings

✦ strong relation between Z and W couplings 
(assuming custodial symmetry for ZbLbL coupling)

[del Aguila et al. ’00;
 Aguilar-Saavedra et al. ’13;
 Grojean, et al. ‘15]

strong constraint on heavy top partners from       , can be 
competitive with direct bounds at LHC Run 2
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‣          for fields with sizable compositeness

Contact operators
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4-top contact operators are induced by strong 
dynamics

✦ can be tested in         productiont̄tt̄t

current bounds on                                     :ORR = (t̄R�
µtR)(t̄R�µtR)

[ATLAS Collab.   ATLAS-CONF-2016-104]
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Figure 1: Representative leading-order Feynman diagram for the main TT̄ production process probed by this search.
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Figure 2: Representative leading-order Feynman diagrams for four-top-quark production (a) within the SM, (b) via an
e�ective four-top-quark interaction in an e�ective field theory model, and (c) via cascade decays from Kaluza–Klein
excitations in a universal extra dimensions model with two extra dimensions compactified using the geometry of the
real projective plane.

using the NNPDF2.3 LO PDF set, referred to as the “UE tune”, is used. The vector-like quarks are
forced to decay with a branching ratio of 1/3 to each of the three modes (W, Z, H). Arbitrary sets of
branching ratios consistent with the three decay modes summing to unity are obtained by reweighting
the samples using generator-level information. Samples are generated assuming singlet couplings and
for heavy-quark masses between 350 GeV and 1500 GeV in steps of 50 GeV. Additional samples are
produced at three mass points (700 GeV, 950 GeV and 1200 GeV) assuming doublet couplings, in order
to confirm that kinematic di�erences arising from the di�erent chirality of singlet and doublet couplings,
after reweighting the singlet and doublet samples to the same branching ratios, have negligible impact on
this analysis. In all samples (both signal and background) used in this search, the top quark and SM Higgs
boson masses are set to 172.5 GeV and 125 GeV respectively. The TT̄ samples are normalised using the
theoretical cross section computed using T��++ v2.0 [88] at next-to-next-to-leading order (NNLO) in
QCD, including resummation of next-to-next-to-leading logarithmic (NNLL) soft gluon terms [89–93],
and using the MSTW 2008 NNLO [94, 95] set of parton distribution functions (PDF).

5.2. Four-top-quark production

Figure 2 depicts representative LO Feynman diagrams for four-top-quark production within the SM and
two di�erent BSM scenarios considered in this analysis: via an e�ective field theory (EFT) involving

8



Top and Flavor



Higgs compositeness and flavor

Higgs compositeness forces flavor structure to be explained at 
“low” energy scales

✦ Higgs associated to a composite operator:

Yukawa’s           are irrelevant couplings reduced by running

OH ⇠  ̄ ) dim[OH ] > 1

f̄OHf

Sizable top Yukawa can only be generated at low scale!

dim[OH ] & 2 ) ⇤t . 10 TeV
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Anarchic partial compositeness
The standard anarchic partial compositeness flavor picture:

✦ Yukawa’s from linear mixing to 
operators from the strong sector
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✦ size of IR mixings related to 
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Flavor and CP-violation constraints
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How to suppress EDM’s

Large EDM’s come from linear partial-compositeness mixings of 
light fermions

f̄i f̄j

γ

Significant improvement if mixing through bilinear operators!

✦ EDM’s generated only at two loops
fi fj

Lbilin ⇠ f̄iOHfj
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   eg. if a constituent has a mass 

An explicit implementation

[GP and A. Pomarol, 1603.06609]
[also:  Vecchi ’12; Matsedonskyi ’15; Cacciapaglia et al. ’15]
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Llin ⇠ "if̄iOfi

Portal interaction for light fermions “decouples” at high energy
⇠ ⇤f

  Bilinear mixing generated at scale ⇤f

larger decoupling scales correspond to smaller fermion masses
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Anarchic vs Dynamical scales
Explicit example:  The down-quark sector
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The hierarchy of scales
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High scale suppresses flavor 
effects

Main flavor effects from top

✦ small contributions to FCNC’s
✦ negligible EDM’s

✦ unavoidable if top is composite!



        corrections to 

             transitions�F = 2
Top partial compositeness at       gives rise to flavor effects  ⇤ir

             operators�F = 2

⇠ Y 2
t

⇤2
ir

(QL3�
µQL3)

2

"K , �MBd , �MBs

rotation to physical basis
VL ⇠ Vckm

• correlated: interesting prediction

• close to experimental bounds
⇤ir & 2� 3 TeV

�MBd

�MBs

' �MBd

�MBs

����
SM

⇤b

⇤s

⇤d OdR , OQL1

⇤u OuR

OsR

OcR , OQL2

OtR , OQL3⇤t ⇠ ⇤ir

⇤c

ObR



             transitions
Top partial compositeness at       gives rise to flavor effects  ⇤ir
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EDM’s

✦ EDM’s for u, d and e suppressed by 
⇤u,d,e > 106 TeV

✦ sizable neutron EDM 
(through top EDM)

✦ sizable electron EDM 
(from two-loop Barr-Zee)
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           and    EDM’s lead to the  
             bound

n e
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Summary of bounds
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✦ huge improvement with respect to the anarchic case 
(especially in the lepton sector)

✦ several effects close to experim. bounds for ⇤ir ⇠ few TeV



Conclusions



Conclusions

The top quark plays a crucial role in composite Higgs models

✦ largest mixing with the new strongly-coupled sector

Main phenomenological handles

✦ light top partners   (charged under QCD and decaying to 3rd gen.)

✦ modification of top couplings   (Yukawa, gauge couplings, contact 
interactions)

✦ flavor structure   (top quark controls flavor- and CP-violation)

✦ portal to access new physics



Backup



The emergent flavor structure
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The emergent flavor structure
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The emergent flavor structure
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The emergent flavor structure
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• mixing angles suppressed by Yukawa’s:

CKM mostly the rotation in the down-quark sector

✓ij ⇠ Yi/Yj



Comparison with anarchic
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‣ particularly relevant for R rotations:  suppressed w.r.t. anarchic

The bilinear scenario predicts smaller off-diagonal elements



Scales of decoupling
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needed to pass FCNCdH ⇠ 2



One scale for each family
More economical construction by associating one scale to each 
generation

decoupling
energy scale operators

⇤u ⇠ ⇤d ⇠ ⇤e

⇤c ⇠ ⇤s ⇠ ⇤µ

⇤t ⇠ ⇤b ⇠ ⇤⌧

OQL1 ,OdR ,OuR , . . .

OQL2 ,OsR ,OcR , . . .

OQL3 ,ObR ,OtR , . . .

✦ Yukawa differences within each generation due to different 
mixings

✦ Only main difference:                close to exp. boundsµ ! e�



Neutrino masses

1

⇤2dH�1
⌫

L
cOHOHL m⌫ ' g2⇤v

2

⇤ir

✓
⇤ir

⇤⌫

◆2dH�1

✦ Majorana masses realization:

for               dimension-7 operators:dH ⇠ 2

m⌫ ⇠ 0.1� 0.01 eV ) ⇤⌫ ⇠ 0.8� 1.5⇥ 108 GeV ⇠ ⇤e

✦ Dirac masses realization:
1

⇤dH�1
⌫

OHL⌫R

for               dimension-5 operators as in SMdH ⇠ 2


