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Testing the Standard Model (SM) at ultrahigh energies

Two important goals of the LHC:

I testing the SM

I discovering new physics (NP)

But one can also complementary test the SM at even higher energies:
e.g. the stability bound

Precise “running” of λ and its β-function

(
βλ ≡

dλ

d lnµ

)
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Result for the stability of the electroweak (EW) vacuum

Phase diagram of the SM:
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[Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia (2014)]
The stability of the electroweak vacuum is violated at the ∼ 3σ level

We see the main uncertainty is due to the top mass, Mt

http://arxiv.org/pdf/1307.3536v4.pdf


Result for the stability bound

Mh > 129.6 GeV + 2.0(Mt − 173.34 GeV)− 0.5 GeV
α3(MZ)− 0.1184

0.0007
± 0.3th GeV

The stability bound is violated at the ∼ 3σ level

Since the experimental error on the Higgs mass is small it is better to express the
bound in terms of the pole top mass:

Mt < (171.53± 0.15± 0.23α3 ± 0.15Mh
) GeV = (171.53± 0.42) GeV.

[Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia (2014)]

http://arxiv.org/pdf/1307.3536v4.pdf


Is the meta-stability worrisome?

Flat space analysis:
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Details on the calculation of the probability of vacuum decay

The probability dP/dV dt per unit time and volume of creating a bubble of true
vacuum within a space volume dV and time interval dt is

dP = dt dV Λ4
B e
−SB

SB is the action of the bounce of size R ≡ Λ−1
B : the bounce h is an SO(4) symmetric

Euclidean solution

h′′ +
3

r
h′ =

dV

dh
, with boundary conditions h′(0) = 0, h(∞) = hEW

[Coleman (1977); Coleman, Callan (1977)]

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.16.1248
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.16.1762


Gravitational corrections

We are looking at extremely high energies, sometimes reaching the Planck mass, M̄Pl.
Does gravity play a role?

One can address this question in Einstein gravity (compatible with all experiments)

L = LEinstein + LSM − ξ|H|2R

However, Einstein gravity is an effective theory with a cutoff ∼ M̄Pl

→ consider an expansion in E/M̄Pl (it is not restrictive: for E > M̄Pl the theory
breaks down)



Some details on the inclusion of gravity
(First down in [Coleman, de Luccia (1980)])

The bounce equation becomes a Higgs-gravity system of equations

h′′ + 3
ρ′

ρ
h′ =

dV

dh
− ξhR, ρ′2 = 1 +

ρ2/M̄2
Pl

3(1 + ξh2/M̄2
Pl)

(
h′2

2
− V − 6

ρ′

ρ
ξhh′

)
where R is the Ricci scalar for the metric

ds2 = dr2 + ρ(r)2dΩ2

(dΩ is the volume element of the unit 3-sphere)

We developed a perturbation theory in 1/RM̄Pl

(weak gravity expansion)

which is adequate to describe the gravitational corrections within Einstein gravity.

[Salvio, Strumia, Tetradis, Urbano (2016)]

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.21.3305
https://arxiv.org/pdf/1608.02555.pdf


Some details on the inclusion of gravity
(First down in [Coleman, de Luccia (1980)])

The bounce equation becomes a Higgs-gravity system of equations

h′′ + 3
ρ′

ρ
h′ =

dV

dh
− ξhR, ρ′2 = 1 +

ρ2/M̄2
Pl

3(1 + ξh2/M̄2
Pl)

(
h′2

2
− V − 6

ρ′

ρ
ξhh′

)
where R is the Ricci scalar for the metric

ds2 = dr2 + ρ(r)2dΩ2

(dΩ is the volume element of the unit 3-sphere)

We developed a perturbation theory in 1/RM̄Pl

(weak gravity expansion)

which is adequate to describe the gravitational corrections within Einstein gravity.

[Salvio, Strumia, Tetradis, Urbano (2016)]

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.21.3305
https://arxiv.org/pdf/1608.02555.pdf


Some details on the inclusion of gravity
(First down in [Coleman, de Luccia (1980)])

The bounce equation becomes a Higgs-gravity system of equations

h′′ + 3
ρ′

ρ
h′ =

dV

dh
− ξhR, ρ′2 = 1 +

ρ2/M̄2
Pl

3(1 + ξh2/M̄2
Pl)

(
h′2

2
− V − 6

ρ′

ρ
ξhh′

)
where R is the Ricci scalar for the metric

ds2 = dr2 + ρ(r)2dΩ2

(dΩ is the volume element of the unit 3-sphere)

We developed a perturbation theory in 1/RM̄Pl (weak gravity expansion)
which is adequate to describe the gravitational corrections within Einstein gravity.

[Salvio, Strumia, Tetradis, Urbano (2016)]

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.21.3305
https://arxiv.org/pdf/1608.02555.pdf


Impact of Einstein gravity on the phase diagram of the SM
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recent measurements of Mt.
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Unnaturalness of the SM + Einstein gravity

Recall naturalness:

δM2
h ∼

g2M2
NP

(4π)2

.M2
h

this can occur

I when MNP ∼ TeV

I when g � 1 and MNP � TeV

A problem:

gravity introduces a large scale MPl �TeV
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Naturalness and gravity

We do not know if GN simply describes a coupling constant
or signals the presence of new degrees of freedom with mass M̄Pl = 1/

√
8πGN

But (Einstein) gravitational interactions increase as energy increases

Idea (softened gravity): consider theories where the power-law increase of the
gravitational coupling stops at ΛG � M̄Pl.

The gravitational contribution to the Higgs mass is then

δM2
h ≈

GNΛ4
G

(4π)2

Requiring naturalness → ΛG . 1011 GeV

[Giudice, Isidori, Salvio, Strumia (2014)]
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Softened gravity and the stability of the EW vacuum

Given that gravity becomes soft at high energies it negligibly affect the stability issue

(checked in a concrete realization of softened gravity)

However, other UV completion of Einstein gravity, such as string theory can affect
these results

But, Planck-scale physics cannot suppress sub-Planckian contributions to SM vacuum
decay, which can only be affected by new physics at lower energies.



Conclusions

I In the pure SM the vacuum stability is excluded at roughly 3σ level

I These calculations involve the extrapolation of the SM potential up to Planckian
energies so one may wonder if gravity changes the result

I We included Einstein gravity within its regime of validity and found that the
corrections are small, even including ξ

I We assumed a desert between the EW and the Planck scale. What about
naturalness? We discussed that a modification of gravity which softened the
strength of gravity at high energy leads to negligible modifications

Disclaimer: New physics below M̄Pl may or may not change completely the results.
So these calculations are useful as tests of the SM hypothesis and are possible means
to find further evidences for new physics.
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