Searches for SUSY and Dark Matter from ATLAS and CMS

With an emphasis on Post-EPS results and t final states

Dan Guest
On behalf of ATLAS and CMS

UC Irvine

September 1, 2017
Theoretical Motivation

Dark Matter

- No particle evidence

Supersymmetry

- Mitigates t corrections to m_H
- Provides dark matter
- Also no evidence

Galaxy Cluster MACS J0025.4−1222
Hubble Space Telescope ACS/WFC
Chandra X-ray Observatory

$dguest@cern.ch$ (UCI)
SUSY + DM, ATLAS + CMS
September 1, 2017 2 / 24
Introduction

Dark Matter: Simplified Models

- Introduce a collection of simplified models
 - Mediators stand in for more complex theories

- Signature is $E_T^{\text{miss}} + \text{associated particles}$
- **Bonus:** we can look for the visible mediator decay products!
- At LHC, grouped into mono-X, di-X searches
SUSY: Less simplified models

- Some are more model based, use SUSY variables
 - m_{T2}, m_{CT}, etc
 - Used to extract SUSY with multiple DM particles in final state

- Some complicated enough that the signature becomes generic, e.g.
 - Multijet + E_T^{miss}: SUSY-2016-13
 - Multijet: SUS-16-040
Mono-Everything (Photon Shown)

The “Easy” Final States: Mono-γ, Mono-jet

Mono-γ (arXiv:1704.03848)

- Require precise E_T^{miss}, object calibration
- Many interpretations

Monojet (PAS: EXO-16-048)

- $\sqrt{s}=13$ TeV, 36.1 fb$^{-1}$
- $m_{\chi} = 10/700$ GeV
- ATLAS
- CMS Preliminary
- Data / Pred.
Next in Line: Mono Boson

Mono-W/Z
(PAS: B2G-17-005)

Mono-H (arXiv:1707.01302)

- Rely heavily on large-\(R \) “fat” jets
- Include subjet \(b \)-tagging, substructure
Mono Top, Hadronic (PAS: EXO-16-051)

- **Trigger:** $H_T^{\text{miss}} > x \cap E_T^{\text{miss}} > x$
 - $x \in \{90, 100, 110, 120\}$, depending on lumi
- **Veto leptons, extra b-jets**
- **One $R = 1.4$ jet passing top selection**
- **Two production modes: resonant and non-resonant**

ATLAS Result

- Similar signal model at $\sqrt{s} = 8$ TeV
- Single lepton, m_T-based selection
- arXiv:1410.5404
CMS Mono Top: Top Tagger

- Soft Drop Mass 110–210 GeV
- b tagged subjet
- Top BDT:
 - HEPTopTaggerV2
 - τ_{32}
 - 11 ECF ratios
- Similar to ATLAS approach
 - ATLAS-CONF-2017-064

Control Regions

- $t\bar{t}$ ($mu + had$), 6%
- $Z \rightarrow \mu\mu + jets$, 7%
No deviation from standard model

Previous limits on on similar models: $M_\phi \lesssim 700$ GeV
2 \ell \ (ATLAS: \texttt{arXiv:1707.02424}, CMS: \texttt{EXO-16-031})

- Look for bumps on a smooth background
- Rules lots of (simplified) parameter space

- Low mass: both experiments use “trigger scouting” and ISR
SUSY Searches

https://cds.cern.ch/record/2113241
$2\tilde{t} \rightarrow 2\ell + 2b + E_T^\text{miss}$ (arXiv:1708.03247)

- Separate from $t\bar{t}$ by cutting hard on m_{T2} (arXiv:hep-ph/0304226)
- Still leaves “gaps” e.g. where $m_{\tilde{t}} - m_t \approx m_{\tilde{\chi}_1^0}$
Focus on “compressed”: small $\Delta m \equiv m_t \tilde{t}_1 - m_{\tilde{\chi}_1^0}$

Custom SV-based discriminant to identify b-jets with $p_T < 20$ GeV
3rd Generation Squark $\rightarrow c, b$ (arXiv:1707.07274)

- Favored when $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} < m_W$
- Use c-tagging to identify FCNC \tilde{t} decays

- Similar final state to arXiv:1407.0608
Summary: Simplified Mediator \((g_q = 0.25, g_\ell = 0.0)\)
Simplified Mediator \((g_q = 0.1, g_{\ell}^A = 0.1, g_{\ell}^V = 0.01) \)
In the low energy limit, we can compare to direct detection

\[\frac{g_X g_q}{Q^2 - M^2} = - \frac{g_X g_q}{M^2} \left(1 + \frac{Q^2}{M^2} + O \left(\frac{Q^4}{M^4} \right) \right) \approx - \frac{g_X g_q}{M^2} \]
Bonus Exclusions: Mono-H

- Showing ATLAS $H \to bb$ (arXiv:1707.01302)
- CMS results in backup
ATLAS SUSY Searches* - 95% CL Lower Limits

May 2017

<table>
<thead>
<tr>
<th>Model</th>
<th>(e, \mu, \tau, \gamma)</th>
<th>Jets</th>
<th>(E_T^{miss})</th>
<th>(\int L dt) (\text{(fb}^{-1}))</th>
<th>Mass limit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSUGRA/CMSM</td>
<td>(0-3), (e, \mu, \tau, \gamma)</td>
<td>1-2</td>
<td>0-2 jets</td>
<td>20.3</td>
<td>1.85 TeV</td>
<td>m((\tilde{g})) = 1.85 TeV, m((\tilde{t}_1)) = 900 GeV</td>
</tr>
<tr>
<td></td>
<td>(0, \chi^0_1)</td>
<td>0</td>
<td>0</td>
<td>3.2</td>
<td>1.07 TeV</td>
<td>m((\tilde{t}_1)) = 900 GeV</td>
</tr>
<tr>
<td></td>
<td>(0, \chi^0_1)</td>
<td>1</td>
<td>0-2 jets</td>
<td>20.3</td>
<td>2.02 TeV</td>
<td>m((\tilde{g})) = 200 GeV, m((\tilde{g}^\prime)) = 200 GeV</td>
</tr>
<tr>
<td></td>
<td>(0, \chi^0_1)</td>
<td>0</td>
<td>0-2 jets</td>
<td>20.3</td>
<td>2.01 TeV</td>
<td>m((\tilde{g})) = 200 GeV, m((\tilde{g}^\prime)) = 200 GeV</td>
</tr>
<tr>
<td></td>
<td>(0, \chi^{\pm}_1)</td>
<td>1</td>
<td>2 jets</td>
<td>3.2</td>
<td>1.71 TeV</td>
<td>m((\tilde{t}_1)) = 400 GeV</td>
</tr>
<tr>
<td></td>
<td>(0, \chi^{\pm}_1)</td>
<td>1</td>
<td>2 jets</td>
<td>13.3</td>
<td>1.5 TeV</td>
<td>m((\tilde{g})) = 400 GeV</td>
</tr>
<tr>
<td></td>
<td>(0, \chi^{\pm}_1)</td>
<td>0</td>
<td>2 jets</td>
<td>0.4-1.5 TeV</td>
<td>m((\tilde{t}_1)) = 200 GeV</td>
<td>1502.01518</td>
</tr>
<tr>
<td>Bilinear RPV CMSM</td>
<td>(0-3), (e, \mu, \tau, \gamma)</td>
<td>0</td>
<td>0-2 jets</td>
<td>20.3</td>
<td>1.85 TeV</td>
<td>m((\tilde{g})) = 1.85 TeV, m((\tilde{t}_1)) = 900 GeV</td>
</tr>
<tr>
<td></td>
<td>(0, \chi^0_1)</td>
<td>1</td>
<td>0-2 jets</td>
<td>20.3</td>
<td>1.07 TeV</td>
<td>m((\tilde{t}_1)) = 900 GeV</td>
</tr>
<tr>
<td></td>
<td>(0, \chi^0_1)</td>
<td>1</td>
<td>0-2 jets</td>
<td>20.3</td>
<td>2.02 TeV</td>
<td>m((\tilde{g})) = 200 GeV, m((\tilde{g}^\prime)) = 200 GeV</td>
</tr>
<tr>
<td></td>
<td>(0, \chi^0_1)</td>
<td>1</td>
<td>0-2 jets</td>
<td>20.3</td>
<td>2.01 TeV</td>
<td>m((\tilde{g})) = 200 GeV, m((\tilde{g}^\prime)) = 200 GeV</td>
</tr>
<tr>
<td></td>
<td>(0, \chi^{\pm}_1)</td>
<td>1</td>
<td>2 jets</td>
<td>3.2</td>
<td>1.71 TeV</td>
<td>m((\tilde{t}_1)) = 400 GeV</td>
</tr>
<tr>
<td></td>
<td>(0, \chi^{\pm}_1)</td>
<td>1</td>
<td>2 jets</td>
<td>13.3</td>
<td>1.5 TeV</td>
<td>m((\tilde{g})) = 400 GeV</td>
</tr>
<tr>
<td></td>
<td>(0, \chi^{\pm}_1)</td>
<td>0</td>
<td>2 jets</td>
<td>0.4-1.5 TeV</td>
<td>m((\tilde{t}_1)) = 200 GeV</td>
<td>1502.01518</td>
</tr>
<tr>
<td>Other</td>
<td>(e, \mu, \tau, \gamma)</td>
<td>0</td>
<td>2</td>
<td>0.4-1.5 TeV</td>
<td>m((\tilde{t}_1)) = 200 GeV</td>
<td>1501.01325</td>
</tr>
</tbody>
</table>

Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.
Wrap Up

- No new physics, but...
- Lots of new ways to look for physics
 - Mono-\(X\) searches: Mono-\(t\), Mono-\(H\)
 - Two body decays from simplified DM models
 - Trigger scouting
 - ISR + dijet
- Also many new SUSY searches
- A lot has happened since EPS 2017
BONUS SLIDES
Multijet + Large R Jet

$E_T^{\text{miss}} + \text{jets (new)}$

ATLAS

$\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$

- Multijet
- $W \rightarrow l\nu + \text{jets}$
- Data
- Other
- $t\bar{t} \rightarrow q\bar{q}, l\bar{l}$
- Total Background

Jets, no E_T^{miss} (new)

CMS Preliminary

- $N_{\text{lep}} = 1$
- $N_{\text{jet}} \geq 8$
- $800 < M_J \leq 1000$ GeV
- $M_{800} < M_b$

- Data
- $t\bar{t}$
- QCD
- $W+\text{jets}$
- Other

Events

Data/Fit

$N_{\text{jet}} \geq 4$
\[\gamma + E_T^{\text{miss}} + H_T \ (\text{arXiv:1707.06193}) \]

Graph:
- Data
- Nongenuine \(p_T^{\text{miss}} \)
- \(\gamma W \)
- \(\gamma t \bar{t} \)
- \(\gamma Z \)
- \(e \rightarrow \gamma \)
- \(T5Wg \) 1600 100
- \(T6gg \) 1750 1650
- Total uncertainty

Legend:
- Events / GeV
- 35.9 fb\(^{-1}\) (13 TeV)
- CMS

Axes:
- \(p_T^{\text{miss}} \) (GeV)
- Normalization
- Validation
- Data/Pred.
- Bkg. frac.
CMS Mono-H

$H \rightarrow \gamma \gamma$ (EXO-16-054)

\[H \rightarrow bb \]

![Graph showing the CMS 95% C.L. limit on σ_{bb} for $m_A=500, 600, 700, 800$ GeV.](image)

- Expected limit
- Observed limit
- ± 1 std. dev.
- ± 2 std. dev.

$2.3 \text{ fb}^{-1} (13 \text{ TeV})$

- CMS $Z \rightarrow \text{DM}+h(2\text{HDM})$
- $h \rightarrow bb + h \rightarrow \gamma \gamma$
- $g_z = 0.8$

σ_{bb} vs m_Z [GeV]