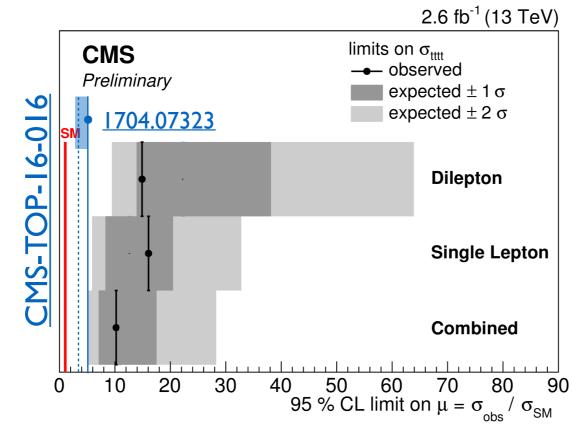


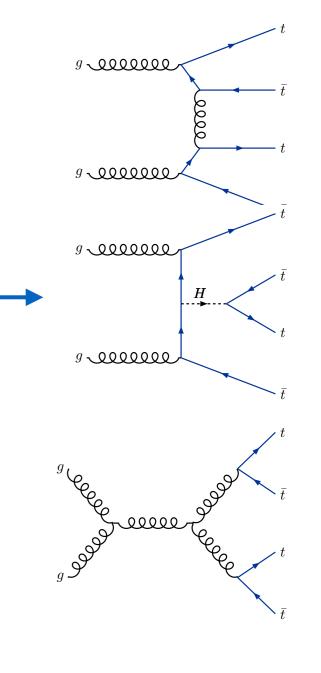
TOP2017

Search for SM production of four top quarks with the CMS detector

CMS-PAS-TOP-17-009

Nick Amin on behalf of the CMS Collaboration


Sept 18, 2017



Introduction

- Four top quarks are *rare* in the Standard Model
 → 9.2 fb NLO cross section at I3TeV
- tttt
 tftt
 production could be impacted by BSM scenarios
 (e.g., gluino pair production in SUSY, two-Higgs-doublet models)
- Process is sensitive to top quark Yukawa coupling through off shell Higgs bosons
- Latest constraints getting closer to SM cross-section...

Measurement strategy

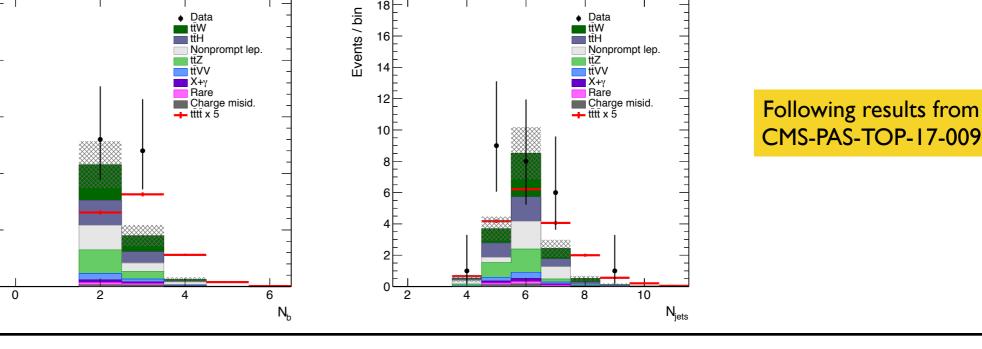
• Utilize events containing a dilepton pair with same charge \rightarrow gives access to ~10% of branching fraction of $t\bar{t}t\bar{t}$ and suppresses the pervasive $t\bar{t}$ background

Data/Pred

Events / bin

25

20


15

10

Take advantage of this high jet multiplicity and perform a <u>fit to data in bins of</u> <u>number of jets N_j and b-tagged jets N_b , to extract the four top cross-section</u>

Data/Pred

1 e/µ (42%)

≥**3 e/**μ (3%)

2 SS e/μ (6%)

Four top quark

branching fractions

2 OS e/µ (12%)

Selection and backgrounds

 Require at least a tight same-sign lepton pair + baseline selection, splitting 2 or ≥3 lepton events

CMS

Categorize in N_j, N_b to obtain 8 signal regions, with 2 control regions

Baseline selection $PT(\ell_1, \ell_2, \ell_3) > 25, 20, 20 \text{ GeV}$

 $N_j \ge 2$ (40 GeV, $|\eta| < 2.4$ jets) N_b≥2 (25 GeV $|\eta| < 2.4$ jets) H_T>300 GeV E_T>50 GeV

 $N_{\rm b}$

2

3

 ≥ 4

2

> 3

Inverted Z veto

N_{jets}

 ≤ 5

6

7

 ≥ 8

5,6

 ≥ 7

 ≥ 5

 ≥ 5

> 4

Region

CRW

SR1

SR2

SR3

SR4

SR5

SR6

SR7

SR8

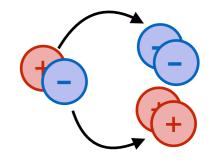
CRZ

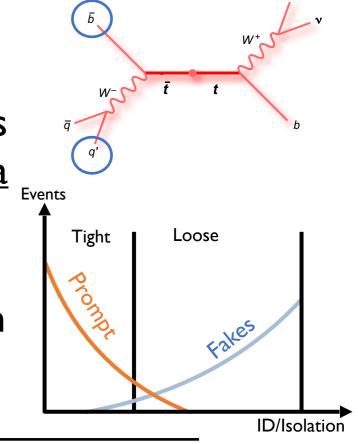
N_{lep}

2

> 3

Non-prompt leptons + charge flips UCSB


Fakes

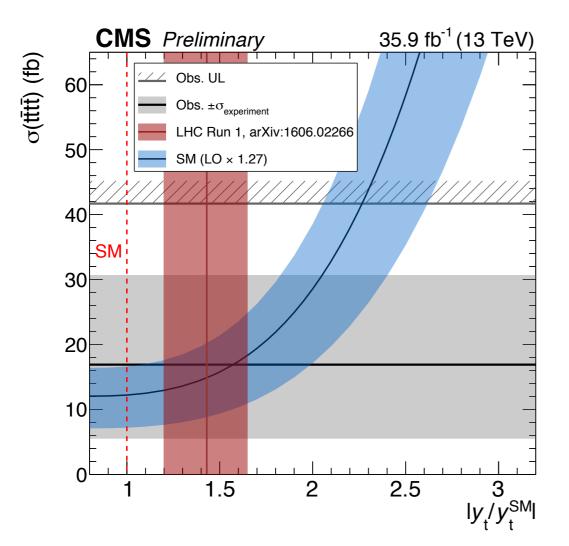

CMS

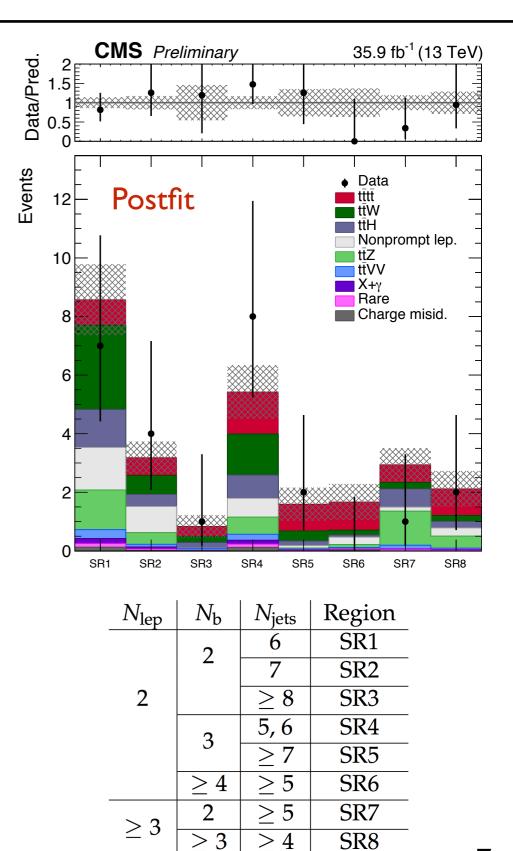
- Estimate fake or non-prompt lepton background by determining probability $\mathcal{E}(p_T, \eta)$ for loose lepton to pass nominal tight selection in QCD-enriched region in data
- Reweight sideband events with one tight and one loose-not-tight lepton by ε/(Ι-ε) to obtain signal region prediction

Flips

• Electron charge flip rate $\mathcal{E}_{flip}(p_T, \eta)$ measured in <u>simulation</u> and applied as a weight $\mathcal{E}_{flip}/(1-\mathcal{E}_{flip})$ to opposite-sign events in data

- ttW control region (CRW) formed from events with 2 btags, \leq 5 jets
- ttZ control region (CRZ) contains baseline events with an oppositesign same flavour Z candidate
- In the maximum likelihood fit to data, these processes are scaled up by about 30%





Results

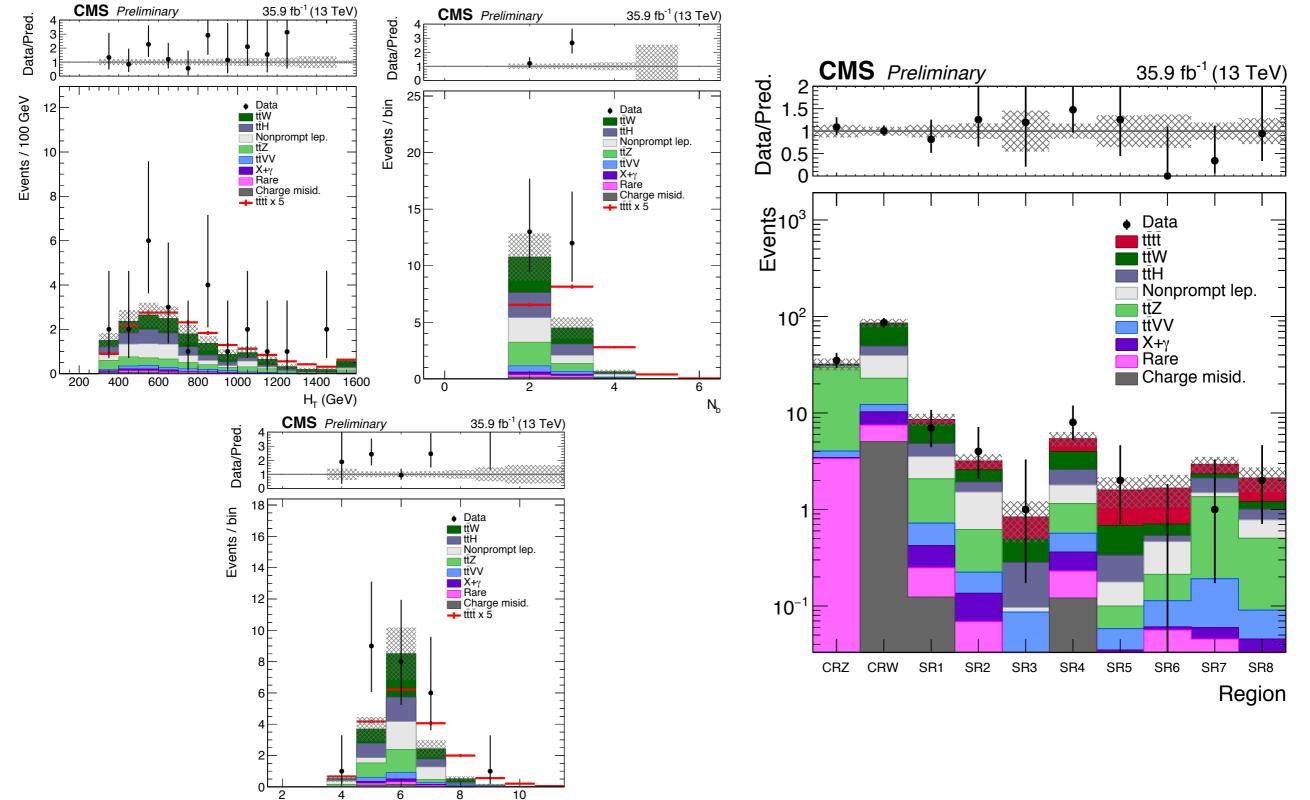
- After the fit to data in the signal + control regions, the four top cross-section is measured to be $16.9^{+13.8}_{-11.4}$ fb, with an observed (expected) significance wrt the bg-only hypothesis of 1.6σ (1.0σ)
- Additionally, this measurement is used to constrain the top Yukawa coupling |y_t/y_tSM|<2.27 at 95% confidence, as motivated by Cao, et al. in <u>1602.01934</u>

7

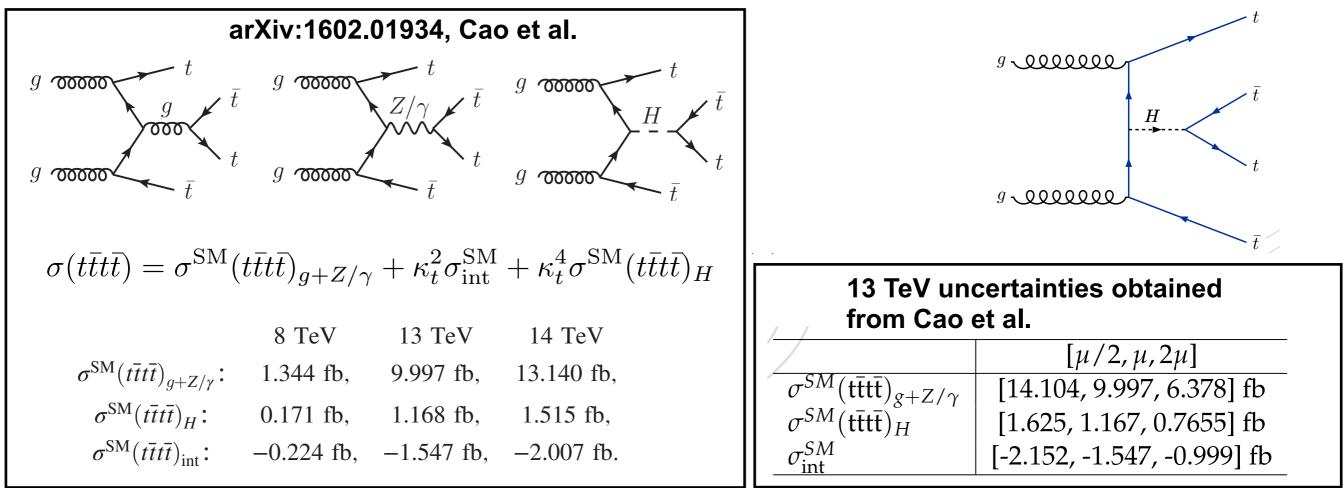
Summary

- While $t\bar{t}t\bar{t}$ production is rare, the similarly rare same-sign signature is effective at isolating this process
- First measurement of four top quark production with the CMS detector at 13 TeV with a same-sign dilepton and multilepton final state shown here
 - CMS also working to release results in opposite-sign and single lepton channels
- Measurement uncertainty currently dominated by statistics

 → to improve in the coming future as data accumulates



SR+CR



N_{jets}

10

Measurement of tttt production can be used to constrain $k_t=y_t/y_t^{SM}$ following the discussion in arXiv:1602.01934.

Uncertainties, Yields

Source	Uncertainty (%)			~	-	
Integrated luminosity	2.5		SM background	tttt	Total	Observed
Lepton selection	4–10	CRZ	31.7 ± 4.6	0.4 ± 0.3	32.1 ± 4.6	35
Trigger efficiency	2–7	CRW	83.7 ± 8.8	1.9 ± 1.2	85.6 ± 8.6	86
Pileup	0–6	SR1	7.7 ± 1.2	0.9 ± 0.6	8.6±1.2	7
Jet energy scale	1–15	SR2	2.6 ± 0.5	0.6 ± 0.4	3.2 ± 0.6	4
Jet energy resolution	1–5	SR3	0.5 ± 0.3	0.4 ± 0.2	0.8 ± 0.4	1
b tagging	1–15	SR4	4.0 ± 0.7	1.4 ± 0.9	5.4 ± 0.9	8
Simulated sample size	1–10	SR5	0.7 ± 0.2	0.9 ± 0.6	1.6 ± 0.6	2
Scale and PDF variations	10–20					_
ISR/FSR (signal only)	5–15	SR6	0.7 ± 0.2	1.0 ± 0.6	1.7 ± 0.6	0
ttH (normalization)	50	SR7	2.3 ± 0.5	0.6 ± 0.4	2.9 ± 0.6	1
ttZ, ttW (normalization)	40	SR8	1.2 ± 0.3	0.9 ± 0.6	2.1 ± 0.6	2
Nonprompt leptons	30–60		I		I	I
Charge misidentification	20					

UCSB