Boosted Top Tagging with Long Short-Term Memory Networks

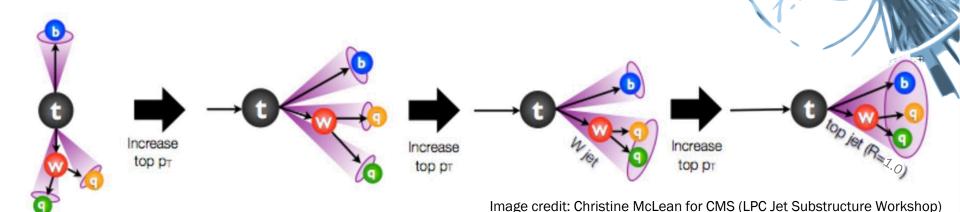
Shannon Egan

University of British Columbia

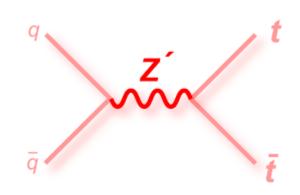
TOP2017

19 September 2017

Why boosted tops?

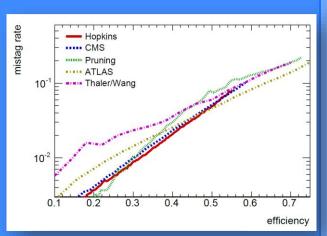


- Boosted tops in BSM physics: heavy resonances decaying to $t\bar{t}$ pairs, VLQ, SUSY
- Top jets are difficult to distinguish from background – hand-made taggers in use



Traditional top taggers

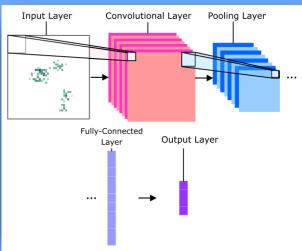
Jet mass, high level QCD variable inputs



- Use QCD motivated variables $(\tau_{32},$ N-subjettiness, jet mass) and clustering history to identify top candidates
- Plehn and Spannowsky (2011, arXiv:1112.4441) show these methods reach background rejection at 0.5 signal efficiency of 10-15

Recent developments: Convolutional Neural Networks (CNN)

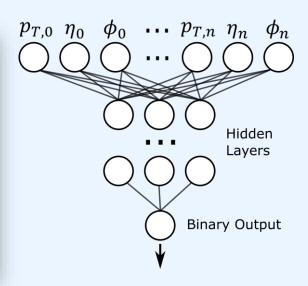
Jet image inputs



 Network alternates between convolution and pooling to progressively extract information from and downsample jet images before fullyconnected layers make a prediction

Our previous work: Deep Dense Neural Networks (DNN)

Particle 4-momenta inputs



arXiV:1704.02124v2

 Network receives flat list containing each particle's transverse momentum, pseudorapidity and azimuth as input and feeds information through a series of fullyconnected (Dense) layers

Anatomy of an LSTM

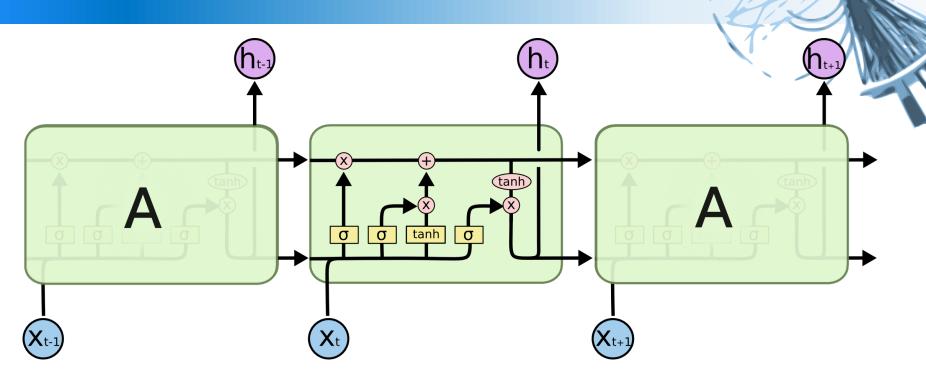


Image credit: colah's blog (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

3 factors affect the final output of an LSTM cell:

- 1. Input at given timestep (x_t)
- 2. Output at previous timestep (h_{t-1})
 - 3. Current value of cell state (C_t)

LSTM inputs and outputs

$$\begin{bmatrix} p_{T,n} \\ \eta_n \\ \phi_n \end{bmatrix}, \dots, \begin{bmatrix} p_{T,1} \\ \eta_1 \\ \phi_1 \end{bmatrix}, \begin{bmatrix} p_{T,0} \\ \eta_0 \\ \phi_0 \end{bmatrix} \longrightarrow \{LSTM\} \longrightarrow \{Dense\}$$

$$\begin{bmatrix} p_{T,n} \\ \eta_n \\ \phi_n \end{bmatrix}, \dots, \begin{bmatrix} p_{T,1} \\ \eta_1 \\ \phi_1 \end{bmatrix} \longrightarrow \{LSTM\} \longrightarrow \{Dense\}$$

 The LSTM does not output to the Dense layer until the final timestep

$$\begin{bmatrix} p_{T,n} \\ \eta_n \\ \phi_n \end{bmatrix} \longrightarrow \{LSTM\} \longrightarrow \{Dense\}$$

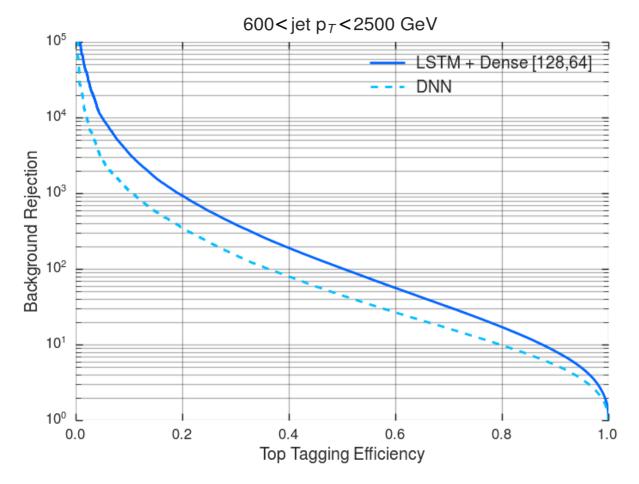
Simulation and jet preselection

• Signal: $Z' \rightarrow t\bar{t}$

Background: dijets

- Generated with PYTHIA v8.219 NNPDF23 LO AS 0130 QED PDF
- DELPHES v3.4.0 using default CMS card, particle-flow
- Selected jets are flat in p_T, signal matched in eta
- $600 \le p_{T,jet} \le 2500 \text{ GeV}$
- ~ 4 million signal jets and ~4 million background jets
 - Sample divided into 80%, 10%, 10% for training, validation and testing
 - Network evaluated on an orthogonal set of ~8 million jets

Comparison to DNN



Model	BR @ 50% SE	BR @ 80% SE
DNN [300, 150, 50, 10, 5, 1]	45.4	9.8
LSTM + Dense [128,64,1]	101	17

Key Metrics

Signal efficiency (SE)

$$SE = \frac{s}{S}$$

 Background rejection (BR)

$$BR = \frac{B}{b}$$

s - tagged signal jets

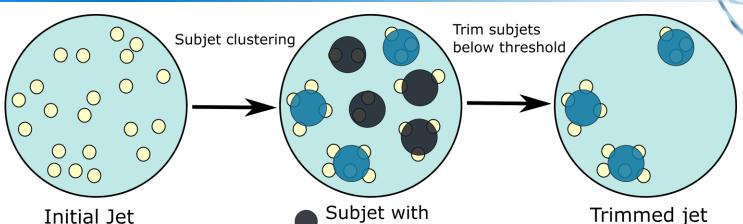
S - true signal jets

b – background jets tagged as signal

B - true background jets

7

Trimming and subjet sorting



 $p_T/p_{T,iet} < f_{cut}$

Trimming algorithm

for jet in list of jets:

Recluster particles into subjets using k_T algorithm

Compute the transverse momentum $(p_{T.subjet})$ of each subjet

If
$$p_{T,subjet}/p_{T,jet} < f_{cut}$$

Remove subjet constituents from list of jet particles

k_T / anti-k_T /CA algorithm

while # unclustered particles > 0:

Compute distance between all pairs of particles (d_{ij}) and from each particle to beam (d_{iB})

if minimum distance is d_{ii} :

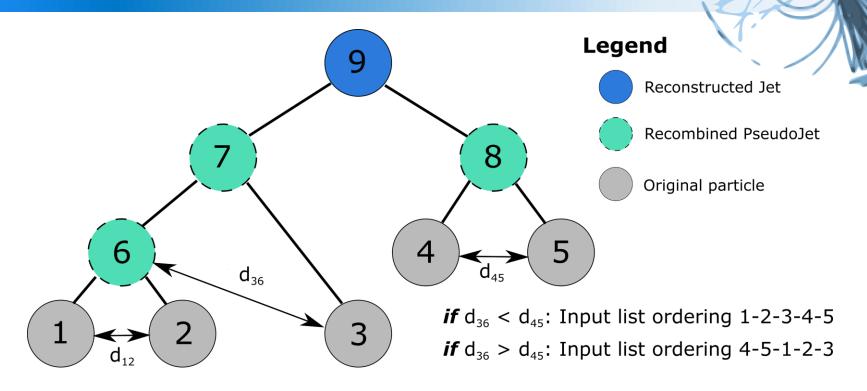
Sum 4-momenta of *i* and *j* and add to list of particles. Remove *i* and *j* from list

if smallest distance is d_{iR} :

Label *i* as a jet and remove from list

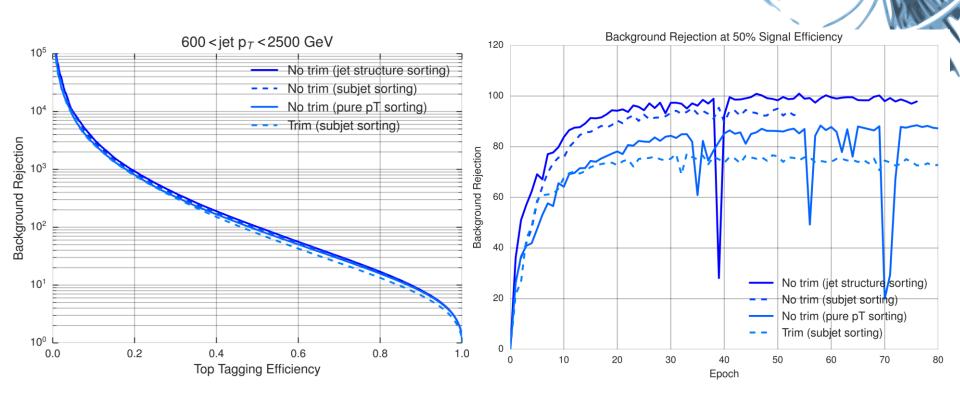
Where: $d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\Delta_{ij}^2}{p^2}$ $d_{iB} = k_{ti}^{2p}$

Jet structure sorting



- We developed a recursive algorithm that performs a depth first traversal of the clustering tree
- Goal: add particles to the input list in an order that reflects their closeness in the jet substructure

Jet structure sorting - Results



 Only ~1% of background jets mistagged as signal by best performing network

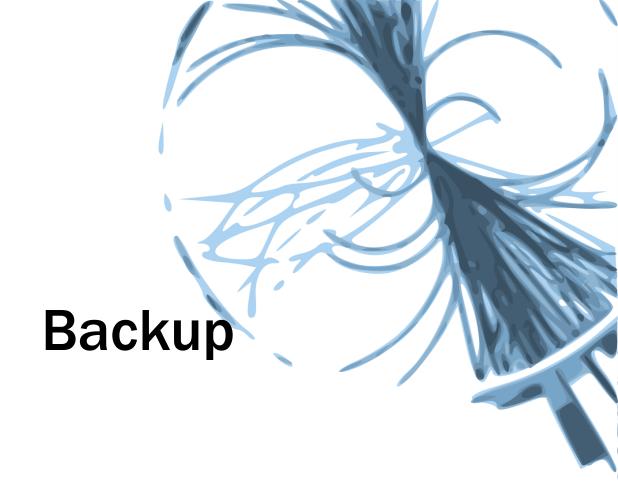
Conclusions and next steps

What we learned:

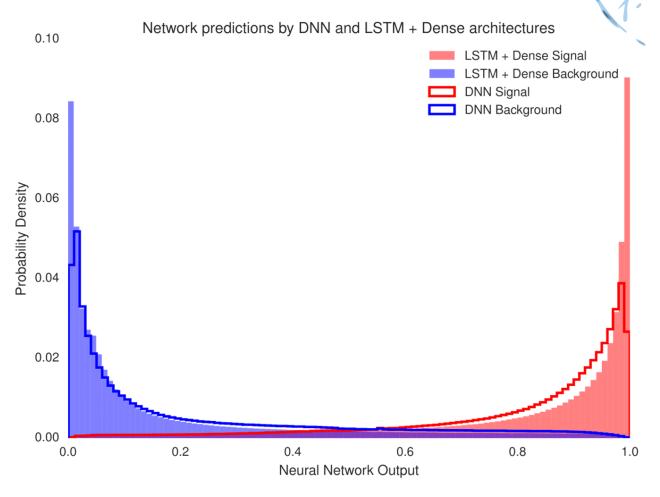
- Implementing a boosted top tagger using LSTMs yields greater than factor of 2 improvement over our DNN model, which already improves on existing methods
- Constituent ordering carries important information; modest effects on network performance

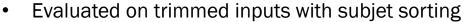
Next steps:

- Test additional sorting methods, e.g. chronological clustering order
- Further analyze effects of pileup, p_T dependence, trimming etc. and try to improve resilience
- Modelling uncertainties
- Look at performance on data

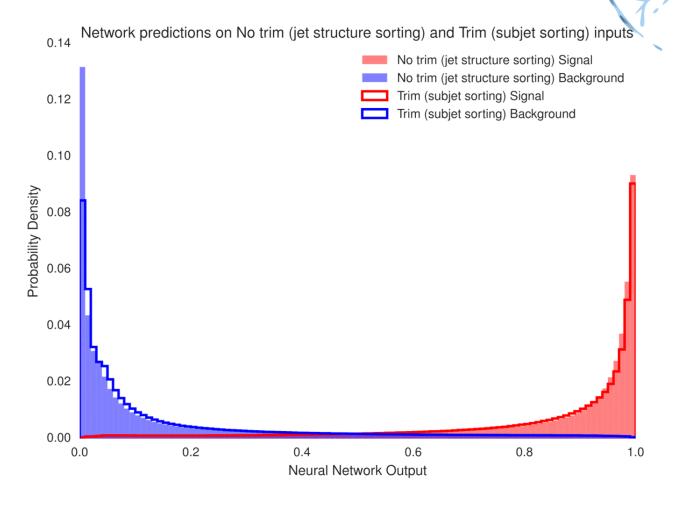


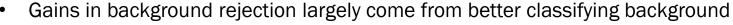
Prediction histograms



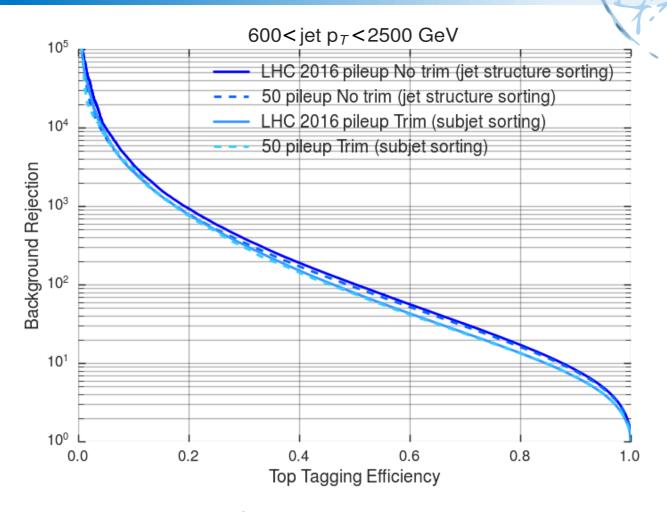


Prediction histograms



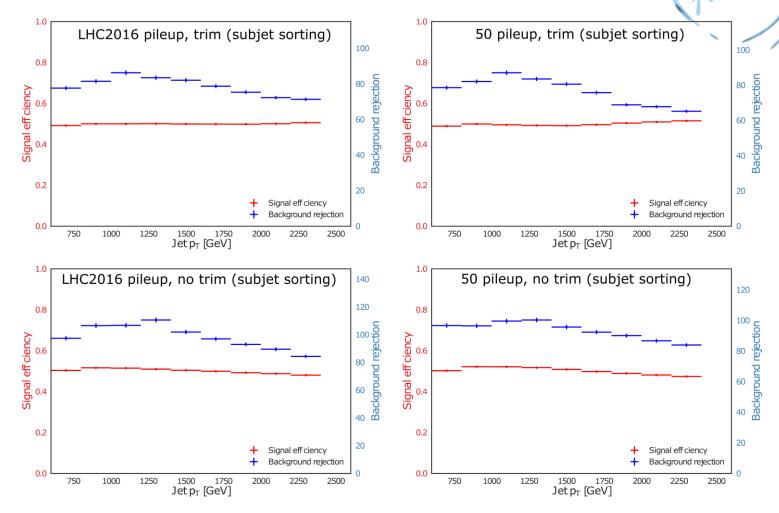


Pileup and trimming effects



- No trim results in better performance in either pileup case
- Network trained on trimmed inputs largely resilient to pileup, performance decreases slightly at higher pileup when inputs are trimmed

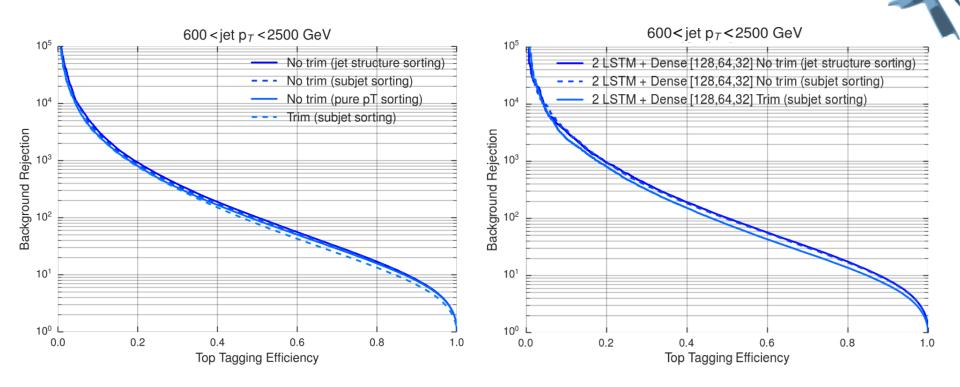
p_T dependence under pileup and trimming effects

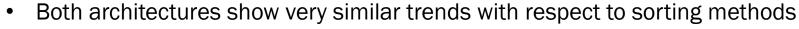


p_T dependence under pileup and trimming effects

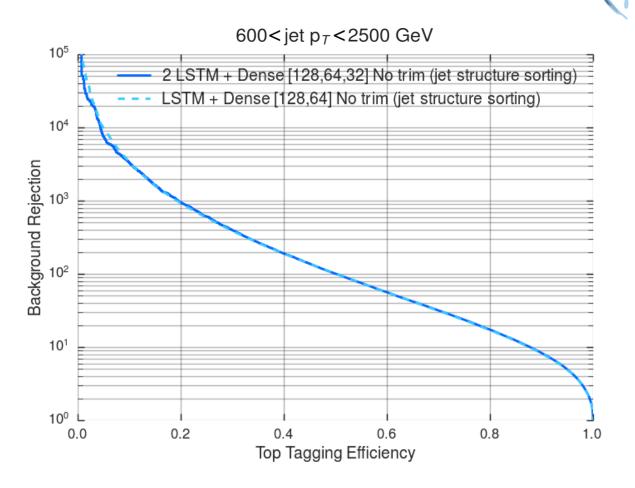


Other LSTM Architectures



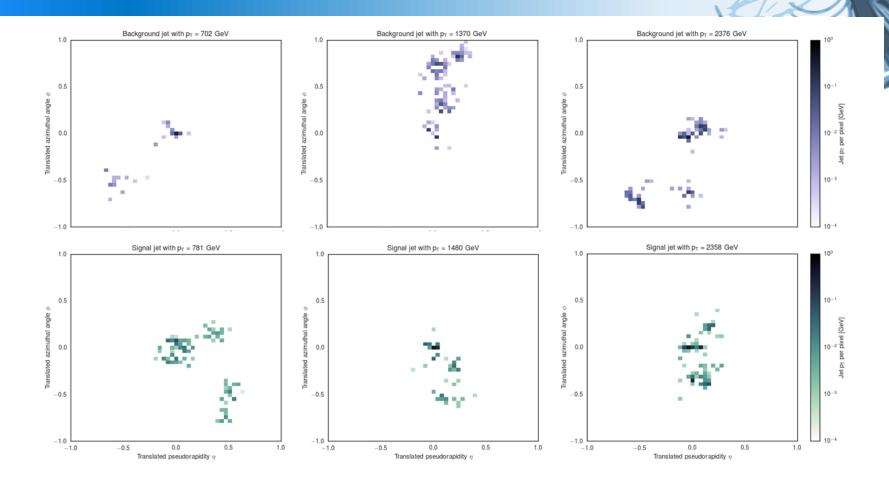


Other LSTM Architectures



 Adding a second LSTM layer has minimal effect on performance, but makes training much more time-consuming

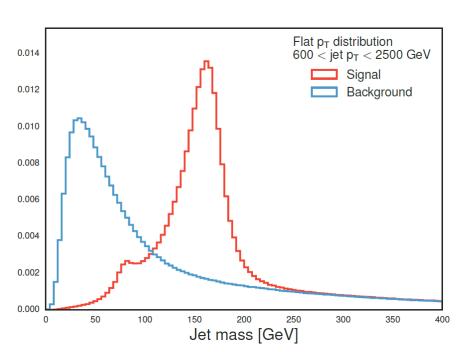
Drawbacks of jet images

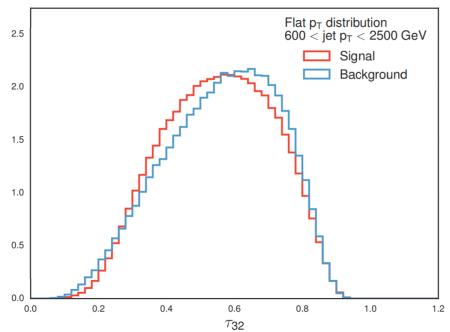


 Jet images are largely sparse in eta-phi space and are not easily distinguishable by eye

Learned features

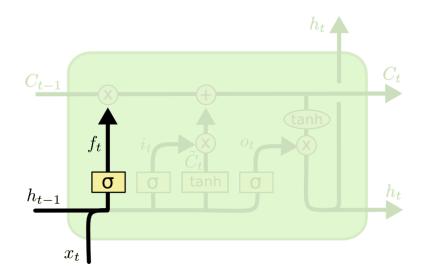






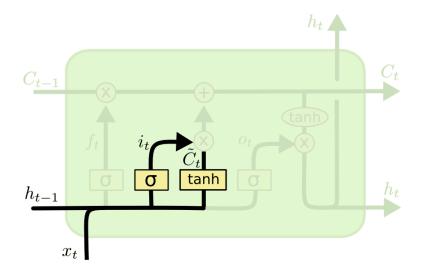
• Jet mass (left) and au_{32} (right) distributions for signal and background tagged jets (DNN)

Forget gate



$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

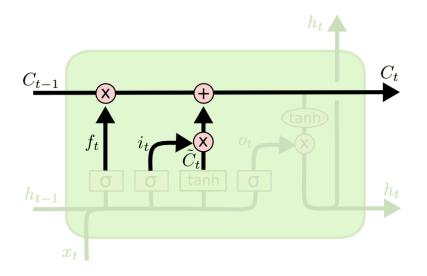
Input gate, cell gate



$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

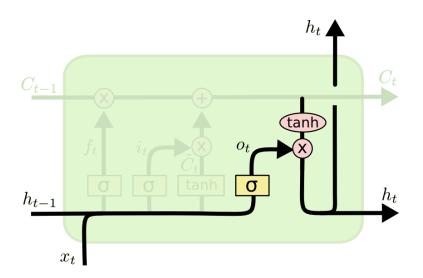
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Cell state



$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Output gate, output



$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Training instability

