

Experimental status of B \rightarrow D^(*)I ν

Christoph Schwanda (Vienna)

Joint workshop on $|V_{ub}|$ and $|V_{cb}|$ (Vxb 2009) October 29-31, 2009, SLAC

$B \rightarrow D^{(*)} I_{\nu}$ width

$$\begin{split} \frac{d\Gamma}{dw}(\overline{B} \to D^*\ell\overline{\nu}_\ell) &= \frac{G_F^2}{48\pi^3}|V_{cb}|^2 m_{D^*}^3 (w^2-1)^{1/2} P(u(\mathcal{F}(w))^2) \\ \frac{d\Gamma}{dw}(\overline{B} \to D\ell\overline{\nu}_\ell) &= \\ \frac{G_F^2}{48\pi^3}|V_{cb}|^2 (m_B+m_D)^2 m_D^3 (w^2-1)^{3/2} (\mathcal{G}(w))^2 \end{split} \qquad w \equiv v \cdot v' \end{split}$$

- The F(w) and G(w) form factors can be parameterized based on HQET and dispersion relations [Caprini et al., Nucl. Phys. B530, 153 (1998)]
- Form factor parameters are ρ^2 , R_1 , R_2 (ρ^2) for D^*Iv (DIv)
- F(1) and G(1) from lattice QCD

F(1) = 0.921 +/- 0.013 +/- 0.020	C.Bernard et al. [Phys.Rev.D79, 014506 (2009)]
G(1) = 1.074 +/- 0.018 +/- 0.016	M.Okamoto et al. [Nucl.Phys.Proc.Suppl. 140, 461 (2005)]

- Experiments do not "extrapolate the rate to zero recoil (w=1)" but fit the f.f. parameterization over nearly the entire phase
- Thus $|V_{cb}|$ excl. relies not only on lattice QCD but also on the f.f. parameterization

	Experimental observables	Uncertainty on V _{cb} excl
$B \rightarrow D^* I \nu$	$F(1) V_{cb} , \rho^2, R_1, R_2$	Theory dominated (lattice)
B → DIν	$G(1) V_{cb} , \rho^2$	Experiment dominated (backgrounds)

Belle B \rightarrow D*I ν

[arXiv:0810.1657] preliminary

[arXiv:0910.3534] preliminary

• Untagged analysis of $B^0 \rightarrow D^{*-}l^+\nu$ and $B^+ \rightarrow D^{*0}l^+\nu$ based on 140/fb of Belle Y(4S) data

• Reconstruct $D^0 \rightarrow K^-\pi^+$ and $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$

• Then $D^{*_+} \rightarrow D^0 \pi^+_s$ and $D^{*_0} \rightarrow D^0 \pi^0_s$

 Reconstruct B momentum using kinematics and the remaining particles in the event

Calculate
 w=p(B)p(D*)/M(B)M(D*) and
 three angles that fully describe
 the decay

• Fit these 4 variables to the differential width (binned fit to the projections in w, $\cos\theta_1$, $\cos\theta_V$ and χ)

	$B^0 o D^{*-} \ell u$	$B^+ o ar{D}^{*0} \ell u$
ρ^2	$1.293 \pm 0.045 \pm 0.029$	$1.376 \pm 0.074 \pm 0.056$
$R_1(1)$	$1.495 \pm 0.050 \pm 0.062$	$1.620 \pm 0.091 \pm 0.092$
$R_2(1)$	$0.844 \pm 0.034 \pm 0.019$	$0.805 \pm 0.064 \pm 0.036$
$R_{K3\pi/K\pi}$	2.153 ± 0.011	2.072 ± 0.023
${\cal B}(B o D^*\ell^+ u_\ell)$	$(4.42 \pm 0.03 \pm 0.25)\%$	$(4.84 \pm 0.04 \pm 0.56)\%$
$\mathcal{F}(1) V_{cb} \times 10^3$	$34.4 \pm 0.2 \pm 1.0$	$35.0 \pm 0.4 \pm 2.2$
$\chi^2/\text{n.d.f.}$	138.8/155	187.8/155
P_{χ^2}	82.0%	3.7%

- Good consistency between isospin states
- Both analyses measure all four observables $(F(1)|V_{cb}|, \rho^2, R_1, R_2)$, in contrast to, e.g., the BaBar B⁺ \rightarrow D^{*0}e⁺ ν analysis [PRL 100, 231803]

BaBar B \rightarrow DXI ν global fit

- Reconstruct D⁰I and D⁺I
 (I=e, μ) combinations in
 207/fb of Y(4S) data
- Fit F(1)| V_{cb} |, G(1)| V_{cb} |, δ $\rho^2_{D^*}$ and ρ^2_{D} using the kinematic variables p_1^* , p_D^* and $\cos\theta_{B-DI}$
- No slow pion systematics for D*Iv

$$F(1)|V_{cb}| = (35.9 + /- 0.2 + /- 1.2) \times 10^{-3}$$

$$G(1)|V_{cb}| = (43.1 + /- 0.8 + /- 2.3) \times 10^{-3}$$

[arXiv:0904.4063] submitted to PRL

BaBar B \rightarrow DIv with hadronic tag

- Use 417/fb of Y(4S) data in which the hadronic decay of one B is fully reconstructed
- Reconstruct $B^0 \to D^-l^+\nu$ and $B^+ \to D^0l^+\nu$ on signal side in 10 bins of w and fit $G(1)|V_{cb}|$ and ρ^2

	$B^- \to D^0 \ell^- \bar{\nu}_\ell$	$\overline B{}^0 o D^+\ell^-ar u_\ell$	$\overline B o D\ell^-ar u_\ell$
$\frac{\mathcal{G}(1) V_{cb} \cdot 10^3}{\sigma^2}$	$41.7{\pm}2.1\ \pm}1.3$	$45.6\pm\ 3.3{\pm}1.6$	$43.0\pm\ 1.9\pm1.4$
$ ho^2$	$1.14\pm~0.11\pm0.04$	$1.29\pm\ 0.14\pm0.05$	$1.20\pm\ 0.09\pm0.04$
$ ho_{ m corr}$	0.943	0.950	0.952
χ^2/ndf	3.4/8	5.6/8	9.9/18
Signal Yield	2147 ± 69	1108 ± 45	-
Recon. efficiency	$(1.99 \pm 0.02) \times 10^{-4}$	$(1.09 \pm 0.02) \times 10^{-4}$	-
\mathcal{B}	$(2.31\pm\ 0.08\ \pm\ 0.09)\%$	$(2.23\pm\ 0.11\ \pm\ 0.11)\%$	$(2.17 \pm 0.06 \pm 0.09)\%$

 $G(1)|V_{cb}| = (43.0 + /- 1.9 + /- 1.4) \times 10^{-3}$

HFAG winter 09 average

11

without new Belle: $F(1)|V_{cb}| = (35.49 + /-0.48) \times 10^{-3}$, $\chi^2/\text{ndf.} = 39.6/21$

with new Belle: $F(1)|V_{cb}| = (35.75 + /-0.42)x10^{-3}$, $\chi^2/ndf. = 56.9/21$

Convenor's questions

 How consistent are existing measurements between experiments, and how well do they respect isospin symmetry?

	F(1) V _{cb} (10 ⁻³)
Belle B ⁰ \rightarrow D*-I+ ν [arXiv:0810.1657]	34.4 +/- 0.2 +/- 1.0
Belle B ⁺ \rightarrow D ^{*0} I ⁺ ν [arXiv:0910.3534]	35.0 +/- 0.4 +/- 2.2
BaBar B ⁰ \rightarrow D*-I+ ν [PRD77, 032002]	34.4 +/- 0.3 +/- 1.1
BaBar B ⁺ \rightarrow D ^{*0} e ⁺ ν [PRL100, 231803]	35.9 +/- 0.6 +/- 1.4

Convenor's questions (2)

 What can be done to determine the sources of the observed discrepancies?

- Discrepancies arise when combining with LEP data
- Slow pion efficiency cannot explain the difference
- Maybe we should check the assumptions in the LEP measurements more carefully?

Is there a systematic difference between 2- and 4-parameter measurements?

BaBar global fit [PRD79, 012002]

Measured	F(1) V _{cb} (10 ⁻³)
$F(1) V_{cb} , \rho^2$	35.9 +/- 0.2 +/- 1.2
$F(1) V_{cb} , \rho^2, R_1, R_2$	35.6 +/- 0.3 +/- 1.0

- Problem with parameterization?
- Artefact of the averaging procedure?

Convenor's questions (3)

- How much improvement in precision can be expected by 2011 (or similar date)?
- Experiment
 - Belle will reduce slow pion tracking uncertainty by moving to the full data set (710/fb)
 - Belle will also try to catch up by doing a tagged analysis of B → Dlv
- Lattice
 - → Ruth' talk

Backup

Belle $B^0 \rightarrow D^*-I^+\nu$ systematics

	$ ho^2$	$R_{1}(1)$	$R_{2}(1)$	$\mathcal{B}(D^*\ell u_\ell)$	$\mathcal{F}(1) V_{cb} $
D^{**}	0.015	0.038	0.011	0.051	0.25
uncorrelated	0.009	0.028	0.002	0.003	0.04
correlated	0.003	0.003	0.007	0.028	0.14
fake ℓ	0.020	0.037	0.009	0.002	0.04
fake D^*	0.012	0.011	0.009	0.034	0.33
continuum	0.003	0.008	0.000	0.001	0.02
tracking	_	_	_	0.221	0.86
$\mathcal{B}(D^0 \to K^- \pi^+) \ [6]$	_	_	_	0.081	0.31
$\mathcal{B}(D^{*+} \to D^0 \pi^+) \ [6]$	_	_	_	0.033	0.13
$ au(B^0)$ [6]	_	_	_	0.026	0.10
$N(Bar{B})$	_	_	_	0.036	0.14
$f_{+-}/f_{0\bar{0}}$ [6]	0.003	0.011	0.005	0.001	0.04
total	0.029	0.062	0.019	0.251	1.04

[arXiv:0910.3534] preliminary

Belle $B^+ \rightarrow D^{*0}I^+\nu$ systematics

	$ ho^2$	$R_1(1)$	$R_{2}(1)$	$\mathcal{F}(1) V_{cb} \times 10^3$	$\mathcal{B}(B^+ o \bar{D}^{*0}\ell^+\nu_\ell)$
Value	1.376	1.620	0.805	34.98	4.841
Statistical Error	0.074	0.091	0.064	0.37	0.044
Tracking	-0.027	+0.025	+0.012	-1.97	-0.491
LeptonID	+0.012	+0.024	-0.011	-0.39	-0.096
Norm - Signal Corr.	-0.007	+0.002	+0.007	+0.13	+0.038
Norm - D^{**}	+0.005	-0.023	+0.002	-0.04	-0.041
Norm - Uncorr	+0.014	+0.074	-0.025	-0.28	-0.023
Norm - Fake ℓ	+0.017	+0.028	-0.010	-0.05	-0.024
Norm - Comb $D^{\ast 0}$	+0.008	+0.014	-0.008	-0.11	-0.028
Norm - Fake ${\cal D}^0$	-0.009	-0.014	+0.007	+0.06	+0.020
Norm - Continuum	+0.004	+0.005	-0.001	0.00	-0.003
Shape - Uncorr	+0.014	+0.003	-0.005	+0.10	
Shape - Comb $D^{\ast 0}$	+0.027	-0.005	-0.008	+0.21	
Shape - Fake D^0	+0.024	+0.003	+0.008	+0.17	
$\mathcal{B}(D^0 o K\pi)$				-0.32	-0.089
$\mathcal{B}(D^{*0} \to D^0 \pi^0)$				-0.82	-0.227
B^+ lifetime				-0.12	-0.033
$N(\Upsilon(4S))$				-0.14	-0.040
f_{+-}/f_{00}	+0.003	+0.006	-0.003	-0.15	-0.043

BaBar global fit systematics

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Electron sample						Muon sample					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	itom	₂ 2	₂ 2				$\mathcal{I}(1) V_{\cdot} $.2	2				$\mathcal{T}(1) V_{\perp} $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		•											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_ ` ′												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. 0												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{llllllllllllllllllllllllllllllllllll$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$J_{D_{2}^{*}}$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
Bremsstrahlung 0.07 0.00 -0.13 -0.28 -0.04 -0.14 0.00 0.00 0.00 0.00 0.00 0.00 Vertexing 0.83 -0.64 0.63 0.60 0.78 0.09 1.79 -0.76 0.97 0.54 1.41 0.01 Background total 1.39 1.12 0.64 0.34 1.07 0.51 1.58 1.09 0.67 0.38 1.16 0.49													
Vertexing 0.83 -0.64 0.63 0.60 0.78 0.09 1.79 -0.76 0.97 0.54 1.41 0.01 Background total 1.39 1.12 0.64 0.34 1.07 0.51 1.58 1.09 0.67 0.38 1.16 0.49													
Background total 1.39 1.12 0.64 0.34 1.07 0.51 1.58 1.09 0.67 0.38 1.16 0.49													
•													
	Total	6.25	5.66	6.01	4.03	5.99	3.20	8.12	5.47	7.35	7.07	6.06	4.23

BaBar B → Dlv tagged systematics

	Systematic uncertainty on $ V_{cb} $, ρ^2 and BF									
		$D^0\ell^-ar u$	e	$D^+\ell^-\bar\nu_\ell$						
	$ V_{cb} (\%)$	$ ho^2$	BF (%)	$ V_{cb} (\%)$	$ ho^2$	BF (%)	$ V_{cb} (\%)$	$ ho^2$	BF (%)	
Tracking efficiency	0.5	0.008	0.7	1.1	0.003	1.4	0.7	0.004	1.0	
Neutral reconstruction	1.0	0.003	1.2	0.8	0.006	0.9	0.9	0.004	1.2	
Lepton ID	1.0	0.009	1.0	0.9	0.009	0.8	0.9	0.009	0.9	
Final State Radiation	0.1	0.005	0.2	0.1	0.005	0.2	0.1	0.005	0.2	
Cascade $\overline{B} \to X \to \ell^-$ decay background	0.6	-	1.2	1.0	-	2.0	0.8	-	1.5	
B^0-B^\pm cross-feed	0.2	0.003	0.2	0.2	0.003	0.2	0.2	0.003	0.2	
$\overline{B} \to D^* \ell^- \bar{\nu}_{\ell}$ form factors	0.6	0.008	0.5	0.2	0.003	0.2	0.4	0.006	0.3	
$\overline{B} \to D^{**} \ell^- \bar{\nu}_{\ell}$ form factors	0.2	0.007	0.2	0.3	0.006	0.2	0.3	0.007	0.1	
D branching fractions	1.0	-	2.0	1.4	-	2.7	1.1	-	2.2	
$\mathcal{B}(\overline{B} o D^{**}\ell^-ar u_\ell)$	1.2	0.023	0.6	1.0	0.011	0.9	1.1	0.019	0.6	
$\mathcal{B}(\overline{B} o X \ell^- \bar{\nu}_\ell)$	0.9	-	1.9	0.9	-	1.9	0.8	-	1.7	
$B_{ m tag}$ selection	1.1	0.021	0.6	1.8	0.036	0.8	1.5	0.028	0.8	
$\overline{B} \to X \ell^- \bar{\nu}_\ell$ fit	0.7	-	1.4	1.1	-	2.2	0.8	-	1.7	
$\overline{B} \to D \ell^- \bar{\nu}_\ell$ fit	1.3	0.018	1.1	1.1	0.027	0.6	1.3	0.020	0.8	
B meson lifetime	-	-	0.7	-	-	0.6	-	-	0.6	
Total systematic error	3.1	0.04	4.1	3.6	0.05	5.0	3.3	0.04	4.3	