

Experimental Status of B → D**(D(*)nπ)ℓv Decays

David Lopes Pegna (Princeton University)

Vxb Worskhop, SLAC 29 October 2009

2

Clean samples of $B \rightarrow D^{(*)}\pi\ell v$ events in both BaBar and Belle analysis, similar techniques and excellent agreement in the measurement of branching fractions $\mathcal{B}(B^{-} \rightarrow D^{(*)+}\pi\ell^{-}\bar{\nu}_{\ell}) = (1.55 \pm 0.10)\%$ HFAG 2009

 $\mathcal{B}(\bar{B}^0 \to D^{(*)0} \pi \ell^- \bar{\nu}_\ell) = (1.38 \pm 0.14)\%$

B → D**ℓv (BaBar)

David Lopes Pegna

B → D**ℓv (Belle)

- Hadronic tag analysis from Belle
- Similar technique to BaBar, independent fits for different final states
- Confirm signals for narrow D₁ and D₂, sees only broad D₀*, no D₁'

 $M(D^{(1)}\pi^*)$

Comparison BaBar-Belle

Decay Mode	Yield	$\mathcal{B} (\bar{B} \to D^{**} \ell^- \bar{\nu}_\ell) \times \mathcal{B} (D^{**} \to D^{(*)} \pi) \% (\text{BELLE})$	BABAR Yield	BABAR Branching Fraction
$D\pi$ invariant mass fit				
$B^- \rightarrow D_0^{*0} \ell^- \bar{\nu}_\ell$	102 ± 19	$0.24 \pm 0.04 \pm 0.06$	137 ± 26	$0.26 \pm 0.05 \pm 0.04$
$B^- \rightarrow D_2^0 \ell^- \bar{\nu}_\ell$	94 ± 13	$0.22 \pm 0.03 \pm 0.04$	97 ± 16	$0.15 \pm 0.02 \pm 0.01$
$\bar{B}^0 \rightarrow D_0^{*+} \ell^- \bar{\nu}_\ell$	61 ± 22	$0.20 \pm 0.07 \pm 0.05$	142 ± 26	$0.44 \pm 0.08 \pm 0.07$
$\bar{B}^0 \rightarrow D_2^+ \ell^- \bar{\nu}_\ell$	68 ± 13	$0.22 \pm 0.04 \pm 0.04$	29 ± 13	$0.07 \pm 0.03 \pm 0.01$
$D^*\pi$ invariant mass fit				
$B^- \rightarrow D_1^{\prime 0} \ell^- \bar{\nu}_\ell$	-5 ± 11	< 0.07 @ 90 CL	142 ± 21	$0.27 \pm 0.04 \pm 0.05$
$B^- \rightarrow D_1^0 \ell^- \bar{\nu}_\ell$	81 ± 13	$0.42 \pm 0.07 \pm 0.07$	165 ± 18	$0.29 \pm 0.03 \pm 0.03$
$B^- \rightarrow D_2^0 \ell^- \bar{\nu}_\ell$	35 ± 11	$0.18 \pm 0.06 \pm 0.03$	40 ± 7	$0.07 \pm 0.01 \pm 0.006$
$\bar{B}^0 \rightarrow D_1^{\prime +} \ell^- \bar{\nu}_\ell$	4 ± 8	< 0.5 @ 90 CL	86 ± 18	$0.31 \pm 0.07 \pm 0.05$
$\bar{B}^0 \rightarrow D_1^+ \ell^- \bar{\nu}_\ell$	20 ± 7	$0.54 \pm 0.19 \pm 0.09$	88 ± 14	$0.27 \pm 0.05 \pm 0.03$
$\bar{B}^0 \rightarrow D_2^+ \ell^- \bar{\nu}_\ell$	1 ± 6	< 0.3 @ 90 CL	12 ± 5	$0.03 \pm 0.01 \pm 0.006$

Result for the D^{*} broad state consistent between BaBar and BELLE

- BaBar observes the D,', not present in the BELLE data
- Narrow D** results consistent with preliminary untagged BaBar results and D0 measurement (PRL 95, 171803 (2005)).

ArXiv:0808.0333 [hep-ex], PRL 103,051803(2009)

David Lopes Pegna

Consistency: the big Picture

Excellent agreement of the most precise measurements, in particular the tagged and untagged Babar analysis

Consistency: the big Picture

Situation more complicated for the broad states.....

David Lopes Pegna

- → BaBar and Belle measure $\mathscr{C}(B \rightarrow D^{(*)}\pi\ell\nu) \sim 1.5\%$
- About 0.6% of this rate is due to the narrow D₁ and D₂ states
- What is the rest?
- BaBar measures about 0.9% for the broad states (an old measurement from Delphi is in agreement with the BaBar findings),
- Belle agrees for the D^{*}, while it sets a very stringent upper limit for the D¹
- We are left with 2 puzzles:

The broad rate is in contrast with theoretical predictions (3/2 vs 1/2 puzzle, see also Bigi's talk) What is the difference between the inclusive rate and the $\Sigma \operatorname{Excl}(D/D^*/D^{(*)}\pi\ell v)$?

- Both Babar and Belle include the possibility for a non-resonant D^(*) component, finding a rate consistent with zero
- A study of the helicity distribution can be used to confirm/not if the fitted "broad" component is consistent with the expected quantum numbers

Belle only reports the helicity study for the $D_2(D\pi)$ and $D_2^*(D\pi)$ channels

Fit of the invariant mass in helicity bins; fit |hely| with theoretical shapes for tensor and scalar states Confirm predictions for these two states

David Lopes Pegna

- The helicity distributions can help in confirm the nature of the measured "broad" states, but current statistics is a problem
- It was also suggested (I. Bigi) that the measured broad states are radial excitations (p-wave)
- Also in this case, an helicity study could help, but statistics may be a limiting factor also for the full dataset/final measurement from BaBar and Belle

16

BEI SYE XYMENE

- → How likely is that we will observe B → D^(*)ππℓν decays?
- The hadronic tag is the most obvious choice
- Challenging however, high multiplicity on the SL side affects hadronic tag selection/purity
- ♦ If we assume a rate of 0.2% for B → D_{1,2} ℓv, D_{1,2} → D^(*)ππ, we should see a few tens of events in 1 ab⁻¹ of Belle data
- BaBar has a new hadronic tag algorithm, expect about >100% improvement in signal yield w.r.t. previous BaBar tagged analysis
 Managurar bayyay an is algority on isotype of this point in the averaged analysis
- Manpower however is clearly an issue at this point in the experiments

Comparing with a few years ago, our knowledge of B semileptonic decays to orbitally excited D mesons has grown a lot
 However, puzzles remain:

 Large rate for the broad components
 Large difference between the BaBar and Belle results
 Role of D → D^(*)ππ decays

 Measurements are still statistically limited!

 Room for improvement
 Is it worth?
 Yes, systematic uncertainty in |V_{cb} | and |V_{ub}| is directly affected by our knowledge of D** states

Backup Slides