SLAC, Oct. 2009

Waiting for Truths and Analyzing Facts in $B \rightarrow lv X_c$

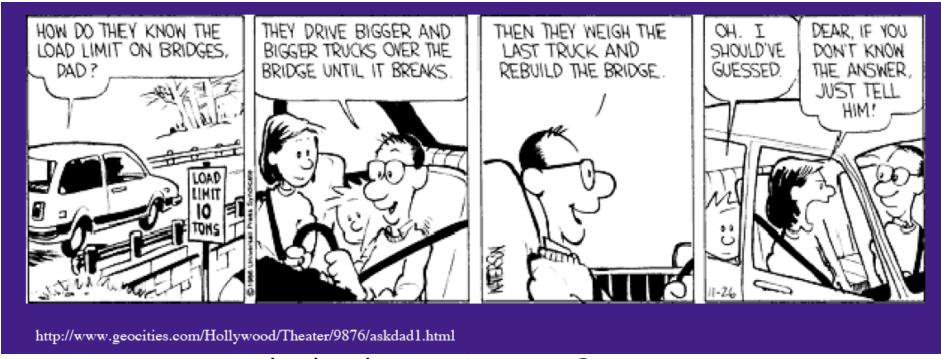
Ikaros Bigi, Notre Dame du Lac

OPE has been applied to B \rightarrow I ν X_c

- total width and moments -

with considerable success leading to a high accuracy description of high quality data:

$$\Delta |V(bc)| = \pm 2 \%$$


Essential foundations of success story:

- heavy quark symmetry
- \square 1/m_O expansions

> a priori as much as possible

- > a priori as much as possible
- > in practice need an a posteriori analysis!

- > a priori as much as possible
- > in practice need an a posteriori analysis!

[with thanks to Marinus Bigi]

- > a priori as much as possible
- > in practice need an a posteriori analysis!

[with thanks to Marinus Bigi]

One applies a theoretical framework/technology to more and more processes & observables - till it fails!

Heavy Quark Symmetry & Heavy Quark Expans.

~
$$H_{Pauli}$$
 = - A_0 +(i ∂ -A)²/2 m_Q + σ ·B/2 m_Q \rightarrow - A_0 as m_Q \rightarrow ∞ i.e., infinitely heavy static quark, without spin dynamics, only colour Coulomb potential!

- hadrons H_Q labeled by total spin S and by $j_q = l_q + s_q$:
 - ground states: $[S|I_q|j_q] = [0,1|0|1/2]$: PS -- B or D -- & V -- B* or D*
 - 1st excit. states: [0,1|1|1/2] & [1,2 |1|3/2]
 - 4 P wave states: 2 $j_a=3/2$ narrow states
 - $2 j_a = 1/2$ broad states

 $m_Q: m_b \text{ or } m_c, \text{ yet } 1/m_b < 1/m_c!$

$$(2/3 - 3/4)$$
 of B $\rightarrow I_V X_c$ given by D/D*

- charm can act as a heavy flavour
- HQ5 classification used also for charm!
 - more dubious for higher excitations
- \angle what is the rest of X_c made up from?
 - P wave states will be present and more

$$D^{**} = X_c - (D+D^*) - \begin{cases} = D_{1/2,3/2}, \ | > 1 \& \text{ radial excitations} \\ = \text{non-resonant D/D*} + \pi' \text{s configurations} \end{cases}$$

'OPE machinery' leads to various Heavy Quark Sum Rules

$$\begin{split} &\mu_{\pi}^{2}(\mu)/3 = \Sigma_{n}^{\ \epsilon < \mu}(\epsilon_{1/2}^{(n)})^{2} |\tau_{1/2}^{(n)}(1)|^{2} + 2 \ \Sigma_{m}^{\ \epsilon < \mu}(\epsilon_{1/2}^{(n)})^{2} |\tau_{3/2}^{(m)}(1)|^{2} \\ &\mu_{G}^{2}(\mu)/3 = -2\Sigma_{n}^{\ \epsilon < \mu}(\epsilon_{1/2}^{(n)})^{2} |\tau_{1/2}^{(n)}(1)|^{2} + 2 \ \Sigma_{m}^{\ \epsilon < \mu}(\epsilon_{1/2}^{(n)})^{2} |\tau_{3/2}^{(m)}(1)|^{2} \\ &\text{with } \tau_{j}^{(n)} \ \text{amplitude for B} \rightarrow |\nu D_{j}^{(n)}, \ \epsilon_{j}^{(n)} = M(D_{j}^{(n)}) - M(D) \end{split}$$

`OPE machinery' leads to various Heavy Quark Sum Rules

$$\begin{split} &\mu_{\pi}^{2}(\mu)/3 = \Sigma_{n}^{\ \epsilon < \mu}(\epsilon_{1/2}^{(n)})^{2} |\tau_{1/2}^{(n)}(1)|^{2} + 2 \ \Sigma_{m}^{\ \epsilon < \mu}(\epsilon_{1/2}^{(n)})^{2} |\tau_{3/2}^{(m)}(1)|^{2} \\ &\mu_{G}^{2}(\mu)/3 = -2\Sigma_{n}^{\ \epsilon < \mu}(\epsilon_{1/2}^{(n)})^{2} |\tau_{1/2}^{(n)}(1)|^{2} + 2 \ \Sigma_{m}^{\ \epsilon < \mu}(\epsilon_{1/2}^{(n)})^{2} |\tau_{3/2}^{(m)}(1)|^{2} \\ &\text{with } \tau_{j}^{(n)} \ \text{amplitude for B} \rightarrow \text{IvD}_{j}^{(n)}, \ \epsilon_{j}^{(n)} = \text{M(D}_{j}^{(n)}) - \text{M(D)} \end{split}$$

Area of theoretical uncertainty:

Sum rules saturate (approximately) at which n,m and μ ? `rule of thumb' based on prior experience: reasonable approximation for n = 0 = m and μ < 1 GeV

`OPE machinery' leads to various Heavy Quark Sum Rules

$$\begin{split} &\mu_{\pi}^{2}(\mu)/3 = \Sigma_{n}^{\ \epsilon < \mu}(\epsilon_{1/2}^{(n)})^{2} |\tau_{1/2}^{(n)}(1)|^{2} + 2 \ \Sigma_{m}^{\ \epsilon < \mu}(\epsilon_{1/2}^{(n)})^{2} |\tau_{3/2}^{(m)}(1)|^{2} \\ &\mu_{G}^{2}(\mu)/3 = -2\Sigma_{n}^{\ \epsilon < \mu}(\epsilon_{1/2}^{(n)})^{2} |\tau_{1/2}^{(n)}(1)|^{2} + 2 \ \Sigma_{m}^{\ \epsilon < \mu}(\epsilon_{1/2}^{(n)})^{2} |\tau_{3/2}^{(m)}(1)|^{2} \\ &\text{with } \tau_{j}^{(n)} \ \text{amplitude for B} \rightarrow |\nu D_{j}^{(n)}, \ \epsilon_{j}^{(n)} = M(D_{j}^{(n)}) - M(D) \end{split}$$

Area of theoretical uncertainty:

Sum rules saturate (approximately) at which n,m and μ ? `rule of thumb' based on prior experience: reasonable approximation for n = 0 = m and μ < 1 GeV

HQ SR do not distinguish between reson. & non-reson. States This is their strength

`OPE machinery' leads to various Heavy Quark Sum Rules

$$\begin{split} &\mu_{\pi}^{2}(\mu)/3 = \Sigma_{n}^{\ \epsilon < \mu}(\epsilon_{1/2}^{(n)})^{2} |\tau_{1/2}^{(n)}(1)|^{2} + 2 \ \Sigma_{m}^{\ \epsilon < \mu}(\epsilon_{1/2}^{(n)})^{2} |\tau_{3/2}^{(m)}(1)|^{2} \\ &\mu_{G}^{2}(\mu)/3 = -2\Sigma_{n}^{\ \epsilon < \mu}(\epsilon_{1/2}^{(n)})^{2} |\tau_{1/2}^{(n)}(1)|^{2} + 2 \ \Sigma_{m}^{\ \epsilon < \mu}(\epsilon_{1/2}^{(n)})^{2} |\tau_{3/2}^{(m)}(1)|^{2} \\ &\text{with } \tau_{j}^{(n)} \ \text{amplitude for B} \rightarrow |\nu D_{j}^{(n)}, \ \epsilon_{j}^{(n)} = M(D_{j}^{(n)}) - M(D) \end{split}$$

Area of theoretical uncertainty:

Sum rules saturate (approximately) at which n,m and μ ? `rule of thumb' based on prior experience: reasonable approximation for n = 0 = m and μ < 1 GeV

HQ SR do not distinguish between reson. & non-reson. States This is their strength - and their weakness

'OPE machinery' leads to various Heavy Quark Sum Rules

$$\begin{split} &\mu_{\pi}^{2}(\mu)/3 = \Sigma_{n}^{\ \epsilon < \mu}(\epsilon_{1/2}^{(n)})^{2} |\tau_{1/2}^{(n)}(1)|^{2} + 2 \ \Sigma_{m}^{\ \epsilon < \mu}(\epsilon_{1/2}^{(n)})^{2} |\tau_{3/2}^{(m)}(1)|^{2} \\ &\mu_{G}^{2}(\mu)/3 = -2\Sigma_{n}^{\ \epsilon < \mu}(\epsilon_{1/2}^{(n)})^{2} |\tau_{1/2}^{(n)}(1)|^{2} + 2 \ \Sigma_{m}^{\ \epsilon < \mu}(\epsilon_{1/2}^{(n)})^{2} |\tau_{3/2}^{(m)}(1)|^{2} \\ &\text{with } \tau_{j}^{(n)} \ \text{amplitude for B} \rightarrow |\nu D_{j}^{(n)}, \ \epsilon_{j}^{(n)} = M(D_{j}^{(n)}) - M(D) \end{split}$$

Area of theoretical uncertainty:

Sum rules saturate (approximately) at which n,m and μ ? `rule of thumb' based on prior experience: reasonable approximation for n = 0 = m and μ < 1 GeV

HQ SR do not distinguish between reson. & non-reson. States This is their strength - and their weakness

- no accurate mass predictions
 - 1/2 P waves could be lighter or heavier than 3/2 P waves

12

no reliable predictions on decay patterns

analysis of HQ SR using observed values of HQP & assuming expected (approximate) saturation yields for P wave production

$$\varepsilon_{1/2}^{(0)}$$
 ~ (300 - 500) MeV vs. $\varepsilon_{3/2}^{(0)}$ ~ 450 MeV $\tau_{1/2}^{(0)}(1)$ ~ 0.14 - 0.32 vs. $\tau_{1/2}^{(0)}(1)$ ~ 0.6

narrow `3/2' have to dominate over broad `1/2'

Quark Models - BT model:

satisfies HQS, Bjorken and Spin SRs, yet no 1/mc correction

LQCD -- yet no 1/mc correction

- agree with predictions on narrow states
 - \triangleright D, D* & D_{3/2} do not quite saturate $\Gamma_{SL}(B)$
 - -- ~ 15 20 % of final states of different nature
 - -- complement should be provided by broad structures

- agree with predictions on narrow states
 - \triangleright D, D* & D_{3/2} do not quite saturate $\Gamma_{SL}(B)$
 - -- ~ 15 20 % of final states of different nature
 - -- complement should be provided by broad structures
- if observed broad structures `1/2', then 3/2' 1/2'!

- agree with predictions on narrow states
 - \triangleright D, D* & D_{3/2} do not quite saturate $\Gamma_{SL}(B)$
 - -- ~ 15 20 % of final states of different nature
 - -- complement should be provided by broad structures
- if observed broad structures `1/2', then 3/2' 1/2'!
 yet
 - BaBar's and Belle's findings not obviously compatible,
 - > while 3/2>1/2 robust prediction of existing theor. techn.

- agree with predictions on narrow states
 - \triangleright D, D* & D_{3/2} do not quite saturate $\Gamma_{SL}(B)$
 - -- ~ 15 20 % of final states of different nature
 - -- complement should be provided by broad structures
- if observed broad structures `1/2', then 3/2' 1/2'!
 yet
 - BaBar's and Belle's findings not obviously compatible,
 - > while 3/2>1/2 robust prediction of existing theor. techn.
- what else could it be?

- agree with predictions on narrow states
 - \triangleright D, D* & D_{3/2} do not quite saturate $\Gamma_{SL}(B)$
 - -- ~ 15 20 % of final states of different nature
 - -- complement should be provided by broad structures
- if observed broad structures `1/2', then 3/2' 1/2'!
 yet
 - BaBar's and Belle's findings not obviously compatible,
 - > while 3/2>1/2 robust prediction of existing theor. techn.
- what else could it be? unconventional scenarios: radial excitations?
 - \geq 2 structures 0^- , 1^- vs. 0^+ , 1^+ for P waves

more conventional resolution:

make had. component dual to gluon radiation

- more conventional resolution:
 - make had, component dual to gluon radiation
 - \triangleright non-reson. D/D*+ π 's/ η forming ~15% not surprising

- more conventional resolution:
 - make had, component dual to gluon radiation
 - > non-reson. D/D*+ π 's/ η forming ~15% not surprising Yet:
 - -- no obvious non-resonant contribution in data

- more conventional resolution:
 - make had. component dual to gluon radiation
 - > non-reson. D/D*+ π 's/ η forming ~15% not surprising Yet:
 - -- no obvious non-resonant contribution in data
 - ♦ true effect?

- more conventional resolution:
 - make had. component dual to gluon radiation
 - > non-reson. D/D*+ π 's/ η forming ~15% not surprising Yet:
 - -- no obvious non-resonant contribution in data
 - ♦ true effect?
 - ♦ bias in detection efficiencies?

- more conventional resolution:
 - make had, component dual to gluon radiation
 - > non-reson. D/D*+ π 's/ η forming ~15% not surprising Yet:
 - -- no obvious non-resonant contribution in data
 - true effect?
 - ♦ bias in detection efficiencies?
 - ϕ not searched for unconventional modes like $D^{(n)} \rightarrow D/D^* + \eta$?

□ "What are the expectations for states decaying to D(*)pipilnu?"

- □ "What are the expectations for states decaying to D(*)pipilnu?"
- > no reliable specific predictions -- `search outside the box' like $D(*)3\pi's$, $D(*)\eta$

- □ "What are the expectations for states decaying to D(*)pipilnu?"
- > no reliable specific predictions -- `search outside the box' like $D(*)3\pi's$, $D(*)\eta$
- □ "What relations can be made between the various modes, i.e. what can be tested?"

- □ "What are the expectations for states decaying to D(*)pipilnu?"
- > no reliable specific predictions -- `search outside the box' like $D(*)3\pi's$, $D(*)\eta$
- □ "What relations can be made between the various modes, i.e. what can be tested?"
- Do not wait for `a priori predictions' it is the hour of `a posteriori lessons':
 need model independent mass distributions for D(*)π's, D(*)η

- □ "What are the expectations for states decaying to D(*)pipilnu?"
- > no reliable specific predictions -- `search outside the box' like $D(*)3\pi's$, $D(*)\eta$
- □ "What relations can be made between the various modes, i.e. what can be tested?"
- Do not wait for `a priori predictions' it is the hour of `a posteriori lessons':
 need model independent mass distributions for D(*)π's, D(*)η
 "What can be said about B->Ds K Inu and related decays"

- □ "What are the expectations for states decaying to D(*)pipilnu?"
- > no reliable specific predictions -- `search outside the box' like $D(*)3\pi's$, $D(*)\eta$
- □ "What relations can be made between the various modes, i.e. what can be tested?"
- Do not wait for `a priori predictions' it is the hour of `a posteriori lessons':
 need model independent mass distributions for D(*)π's, D(*)η
 "What can be said about B->Ds K Inu and related decays"
- Most valuable analogy will be $B_s \to I \vee D_s(*)\pi's$ etc.; finding $B \to I \vee D_s K$ would be a 'game changer'

temptation to hide behind experimental uncertainties a treacherous one!

- temptation to hide behind experimental uncertainties a treacherous one!
- why bother with such a subtle problem?

- temptation to hide behind experimental uncertainties a treacherous one!
- why bother with such a subtle problem?
 - > it is not a problem it is a challenge!

- temptation to hide behind experimental uncertainties a treacherous one!
- why bother with such a subtle problem?
 - > it is not a problem it is a challenge!
 - novel lessons on non-perturbative dynamics

- temptation to hide behind experimental uncertainties a treacherous one!
- why bother with such a subtle problem?
 - it is not a problem it is a challenge!
 - novel lessons on non-perturbative dynamics
 - even of practical concerns will affect in particular values of integrated moments!