# $B \rightarrow X_{c} \ell \nu:$ Status of $O\left(\alpha_{s} / m_{b}^{2}\right)$ calculations 

Enrico Lunghi<br>Indiana University

Vxb 2009-SLAC

## Outline

- Motivation
- Kinetic Corrections: method \& results
- Chromo-magnetic corrections: status


## The role of $V_{u b}$ and $V_{c b}$

- $\mathrm{V}_{\mathrm{cb}}$ is the dominant source of uncertainty on $\varepsilon_{K}$

$$
\left|\varepsilon_{K}\right|=\kappa_{\varepsilon} C_{\varepsilon} \hat{B}_{K}\left|V_{c b}\right|^{2} \lambda^{2} \eta\left(\left|V_{c b}\right|^{2}(1-\bar{\rho}) \eta_{t t} S_{0}\left(x_{t}\right)+\eta_{c t} S_{0}\left(x_{c}, x_{t}\right)-\eta_{c c} x_{c}\right)
$$



## The role of $V_{u b}$ and $V_{c b}$

- Inclusive and exclusive determinations of $\mathrm{V}_{\mathrm{cb}}$ and $\mathrm{V}_{\mathrm{ub}}$ are about $2 \sigma$ apart.
- $\mathrm{V}_{\mathrm{cb}}$ is critical to establish the presence of NP in the UT
- $\mathrm{V}_{\mathrm{ub}}$ is measured in tree level processes that are not expected to be sensitive to NP. Its value is essential in order to decide whether we have effects in $K$ or B mixing.



## Operator Product Expansion

$\left.\Gamma=\frac{G_{F}\left|V_{c b}\right|^{2} m_{b}^{5}}{192 \pi^{3}}\left\{f(\rho)+\kappa(\rho) \frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}+g(\rho) \frac{\mu_{G}^{2}}{2 m_{b}^{2}}+d(\rho) \frac{\rho_{D}^{3}}{m_{b}^{3}}+l(\rho) \frac{\rho_{\mathrm{LS}}^{3}}{m_{b}^{3}}\right)\right\}$

- Known perturbative orders $\left(\rho=m_{c}^{2} / m_{b}^{2}\right)$ :

$$
\begin{array}{ll}
f(\rho)=f^{(0)}(\rho)+\alpha_{s} f^{(1)}(\rho)+\alpha_{s}^{2} f^{(2)}(\rho) & \text { [Melnikov] } \\
\kappa(\rho)=\kappa^{(0)}(\rho)+\alpha_{s} \kappa^{(1)}(\rho) & \text { [Becher, Boos, EL] } \\
g(\rho)=g^{(0)}(\rho)+\alpha_{s} g^{(1)}(\rho) & \text { almost complete [Becher, Lange, EL] } \\
d(\rho)=d^{(0)}(\rho)+\alpha_{s} d^{(1)}(\rho) & \begin{array}{l}
\text { possible with the techniques } \\
\text { described in this talk }
\end{array} \\
l(\rho)=l^{(0)}(\rho) & \\
\text { O(1/mb}) \text { also known at tree-level [Dassinger, Mannel, Turczyk] }
\end{array}
$$

- Non-perturbative matrix elements definitions:

$$
\mu_{\pi}^{2}=-\frac{1}{2 M_{B}}\langle\bar{B}| \bar{h}_{v}(i D)^{2} h_{v}|\bar{B}\rangle \quad \mu_{G}^{2}=\frac{1}{2 M_{B}}\langle\bar{B}| \frac{g_{s}}{2} \bar{h}_{v} \sigma_{\mu \nu} G^{\mu \nu} h_{v}|\bar{B}\rangle
$$

## Calculations at $O\left(\alpha_{s} / m_{b}^{2}\right)$ <br> [Becher, Boos, EL; Becher, Lange, EL]

- Expected to be of the same order as NNLO corrections
- Corrections to the kinetic and chromo-magnetic operators:


Expand at $O\left(r^{2}\right)$

$\bar{h}_{v}(i D)^{2} h_{v}$
[Complete]


Expand at $O(r)$

$\frac{g_{s}}{2} \bar{h}_{v} \sigma_{\mu \nu} G^{\mu \nu} h_{v}$
[Almost complete]

## Kinetic corrections: methods

- Expand the r -loop rate at second order in the residual momentum ( $p_{b}^{\mu}=m_{b} v^{\mu}+r^{\mu}$ )
- In the kinetic case we can choose whether to expand before or after loop integration

Q After: subtle but simpler. Requires only leading partonic rate at r -loop and PS parametrization

Q Before: more complicated. Useful as check and as test ground to tackle magnetic corrections

## Expansion after loop integration

- The hadronic rate can be written as:
[Manohar,Wise]

$$
\begin{aligned}
& \frac{\mathrm{d} \Gamma}{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} \hat{q}^{2}}=\left[1+\frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}\left(-1+x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+\frac{1}{3} x^{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{1}{3} y^{2} \frac{\partial^{2}}{\partial y^{2}}+\frac{2}{3}\left(x y-2 \hat{q}^{2}\right) \frac{\partial^{2}}{\partial x \partial y}\right)\right] \frac{\mathrm{d} \Gamma^{\text {partonic }}}{\mathrm{d} x \mathrm{~d} y \mathrm{~d} \hat{q}^{2}} \\
& \text { where } x=2 E_{\nu} / m_{b}, y=2 E_{e} / m_{b} \text { and } \hat{q}^{2}=\left(p_{e}+p_{\nu}\right)^{2} / m_{b}^{2}
\end{aligned}
$$

- Integrating by parts one gets (with a cut $y_{\circ}$ on $E_{e}$ ):

$$
\begin{aligned}
{\left[x^{n} y^{m}\left(\hat{q}^{2}\right)^{\prime}\right]_{y_{0}} } & =\left[x^{n} y^{m}\left(\hat{q}^{2}\right)\right]_{y_{0}}^{\text {paroronic }} \\
& +\frac{\mu_{\pi}^{2}}{6 m_{b}^{2}}\left[\left((n+m)^{2}+2 m+2 n-3\right) x^{n} y^{m}\left(\hat{q}^{2}\right)^{l}-4 m n x^{n-1} y^{m-1}\left(\hat{q}^{2}\right)^{\prime+1}\right]_{y_{0}}^{\text {paroonc }} \\
+ & \frac{\mu_{\pi}^{2}}{6 m_{b}^{2}}\left[\left((m+2 n+1) x y_{0}-4 n \hat{q}^{2}\right) x^{n-1} y_{0}^{m}\left(\hat{q}^{2}\right)^{l} \delta\left(y-y_{0}\right)+x^{n} y_{0}^{m+2}\left(\hat{q}^{2}\right)^{l} \delta^{\prime \prime}\left(y-y_{0}\right)\right]^{\text {paronoic }}
\end{aligned}
$$

- Insert Phase Space parametrization ( $x$ and $\hat{q}^{2}$ are functions of $y$ )
- Derivatives act on the whole integrand (including $x^{n} y^{m}\left(\hat{q}^{2}\right)^{l}$ )


## Expansion before loop integration

- We use on shell b-quarks: $p_{b}^{2}=\left(m_{b} v+r\right)^{2}=m_{b}^{2} \Rightarrow v \cdot r=-r^{2} /\left(2 m_{b}\right)$
- The partonic rate expanded in $r$ and averaged over $r_{\perp}$ is:
$\mathrm{d} \Gamma^{\text {partonic }}=A-A_{\mu} \nu^{\mu} \frac{r^{2}}{2 m_{b}^{2}}+A_{\mu \nu} \frac{r^{2}}{m_{b}^{2}} \frac{1}{d-1}\left(g_{\mu \nu}-v_{\mu} v_{\nu}\right)$
- Replacing b-quark with B-meson matrix elements we get:
$\mathrm{d} \Gamma=A-\frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}\left[A-A_{\mu} v^{\mu}+A_{\mu \nu} \frac{2}{d-1}\left(g_{\mu \nu}-v_{\mu} v_{\nu}\right)\right]$
- After the expansion the structure of the result is

$$
\mathrm{d} \Gamma \propto \frac{d^{d-1} p_{e}}{2 E_{e}} \frac{d^{d-1} p_{\nu}}{2 E_{\nu}}\left[f_{0} \delta\left(p_{c}^{2}-m_{c}^{2}\right)+f_{1} \delta^{\prime}\left(p_{c}^{2}-m_{c}^{2}\right)+f_{2} \delta^{\prime \prime}\left(p_{c}^{2}-m_{c}^{2}\right)\right]
$$

where $f_{i}$ contain integration over Feynman parameters (virtual corrections) or gluon momentum (real corrections)

## Expansion before loop integration

- Evaluation of delta functions require phase space parametrization with off-shell charm quark:

$$
\left.\Gamma \propto \int[\mathrm{d} \Pi] f_{0}\right|_{p_{c}^{2}=m_{c}^{2}}-\left.\frac{\mathrm{d}}{\mathrm{~d} p_{c}^{2}} \int[\mathrm{~d} \Pi] f_{1}\right|_{p_{c}^{2}=m_{c}^{2}}+\left.\frac{\mathrm{d}^{2}}{\mathrm{~d}\left(p_{c}^{2}\right)^{2}} \int[\mathrm{~d} \Pi] f_{2}\right|_{p_{c}^{2}=m_{c}^{2}},
$$

where $[d \Pi]$ is the complete $b \rightarrow c e \nu(g)$ phase space with $p_{c}^{2} \neq m_{c}^{2}$

- Requirements on the measure parametrization:

Q map both phase-space and loop integration on the unit hypercube
Q use lepton energy as variable for easy implementation of cut

- restrict IR divergences to a single variable


## Phase space parametrization

$$
\int\left[\mathrm{d} \Pi_{b \rightarrow c+b+\ell+\bar{\nu}}\right]=\int \frac{d p_{X}^{2}}{2 \pi} \int\left[\mathrm{~d} \Pi_{b \rightarrow X+\ell+v}\right] \int\left[\mathrm{d} \Pi_{X \rightarrow c+\varepsilon}\right]
$$

- Three body phase space:

$$
\begin{aligned}
& \int_{m_{c}^{2}}^{m_{b}^{2}} \frac{d p_{x}^{2}}{2 \pi} \int\left[\mathrm{~d} \Pi_{b \rightarrow x+\ell+\bar{\nu}}\right] \\
&=\frac{\Omega_{d-1} \Omega_{d-2} m_{b}^{4-4 \epsilon}}{2^{d+1}(2 \pi)^{2 d-2}} \int_{0}^{1-\rho} d y \int_{y_{0}}^{1} d \lambda_{2} d \lambda_{3}(1-\rho-y)^{2-2 \epsilon} \kappa^{2 \epsilon-2}\left(y\left(1-\lambda_{2}\right)\right)^{1-2 \epsilon}\left(\left(1-\lambda_{3}\right) \lambda_{3}\right)^{-\epsilon}
\end{aligned}
$$

where $p_{b}=\left(m_{b}, 0,0,0\right) \quad p_{\ell}=\left(E_{\ell}, 0,0, E_{\ell}\right) \quad p_{\nu}=\left(E_{\nu}, E_{\nu} \sin \theta_{1}, 0, E_{\nu} \cos \theta_{1}\right)$

$$
\begin{array}{ll}
E_{\ell}=m_{b} \frac{y}{2} & E_{\nu}=m_{b} \frac{(1-\rho-y)\left(1-\lambda_{2}\right)}{2 \kappa} \quad \cos \theta_{1}=2 \lambda_{3}-1 \\
\rho=\frac{m_{c}^{2}}{m_{b}^{2}} & \kappa=1-\left(1-\cos \theta_{1}\right) y / 2 \quad \Omega_{d}=\frac{2 \pi^{d / 2}}{\Gamma(d / 2)}
\end{array}
$$

Q IR divergences in real corrections are controlled by

$$
E_{g} \propto p_{X}^{2}-\rho^{2}=\lambda_{2}(1-\rho-y)
$$

## Phase space parametrization

$$
\int\left[\mathrm{d} \Pi_{b \rightarrow c+g+++\bar{\nu}}\right]=\int \frac{d p_{X}^{2}}{2 \pi} \int\left[\mathrm{~d} \Pi_{b \rightarrow X+\ell+v}\right] \int\left[\mathrm{d} \Pi_{X \rightarrow c+g}\right]
$$

- Two body phase space:

$$
\begin{aligned}
& \int\left[\mathrm{d} \Pi_{x \rightarrow c+g}\right]=\frac{1}{2(2 \pi)^{d-2}} \int d \cos \theta_{2} \frac{\sin ^{d-4} \theta_{2} E_{g}^{d-2}}{p_{x}^{2}-m_{c}^{2}} \int d^{d-2} \vec{p}_{\perp} \\
& p_{g}=\left(E_{g}, 0,0,0\right)+E_{g} \cos \theta_{2}\left(0, \frac{\vec{p}_{x}}{\left|\vec{p}_{x}\right|}\right)+E_{g} \sin \theta_{2}\left(0, \vec{p}_{\perp}\right) \\
& p_{\perp}=\sin \theta_{3}(0,0,1,0)+\cos \theta_{3} \frac{1}{\left|\vec{p}_{x}\right|}\left(0, E_{v} c_{1}+E_{l}, 0,-E_{v} s_{1}\right) \\
& E_{g}=\frac{p_{x}^{2}-m_{c}^{2}}{2\left(E_{x}-\cos \theta_{2}\left|\vec{p}_{x}\right|\right)} .
\end{aligned}
$$

- All kin. quantities are expressed in terms of the integration variables
- IR divergences appear in the limit $E_{g} \propto \lambda_{2} \rightarrow 0: \frac{1}{\lambda_{2}^{1+2 \epsilon}}=-\frac{1}{2 \epsilon} \delta\left(\lambda_{2}\right)+\left[\frac{1}{\lambda_{2}}\right]_{+}$


## Summary of calculation

- Diagrams:

- Expansion in the residual momentum $\Rightarrow \delta^{(n)}\left(p_{c}^{2}\right)$
- Phase space parametrization
- Evaluation of $\delta^{(n)}\left(p_{c}^{2}\right)$ for real and virtual contributions
- Isolation of IR divergences in real diagrams
- Renormalization (Larin convention for axial current in dimensions)
- hurrah!


## Kinetic corrections: results

- Moments with non vanishing leading power contributions ( $E_{\ell}>1 \mathrm{GeV}$ ):

|  | 1 | $\frac{\alpha_{s}}{\pi}$ | $\frac{\mu_{2}^{2}}{2 m_{b}^{2}}$ | $\frac{\alpha_{s}}{\pi} \frac{\mu_{2}^{2}}{2 m_{b}^{2}}$ | $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $0.5149(3)$ | $-0.910(3)$ | $-0.5692(6)$ | $0.987(8)$ | 0.1 |
| $\hat{E}_{l}$ | $0.1754(1)$ | $-0.314(1)$ | $0.0109(3)$ | $-0.024(3)$ | 0. |
| $\hat{E}_{l}^{2}$ | $0.06189(5)$ | $-0.1128(5)$ | $0.1105(1)$ | $-0.202(1)$ | -0.2 |
| $\hat{E}_{l}^{3}$ | $0.02251(2)$ | $-0.0418(2)$ | $0.09269(5)$ | $-0.1722(7)$ | -0.6 |
| $\hat{E}_{x}$ | $0.211(1)$ | $-0.365(1)$ | $-0.5694(2)$ | $1.010(3)$ | 0.4 |
| $\hat{E}_{x}^{2}$ | $0.08917(7)$ | $-0.1482(7)$ | $-0.3378(1)$ | $0.576(1)$ | 0.5 |
| $\hat{E}_{x}^{3}$ | $0.03867(4)$ | $-0.0606(4)$ | $-0.16898(6)$ | $0.2639(7)$ | 0.5 |

- Effects are tiny as expected
- Impact on the extraction of $\mathrm{V}_{\mathrm{cb}}$ should be small


## Kinetic corrections: results

- Hadronic moments with no leading power contributions $\left(E_{\ell}>1 \mathrm{GeV}\right)$ :

|  | 1 | $\frac{\alpha_{s}}{\pi}$ | $\frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}$ | $\frac{\alpha_{s}}{\pi} \frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}$ | $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\hat{p}_{x}^{2}-\rho\right)$ | 0 | $0.03618(2)$ | $-0.6855(2)$ | $1.213(2)$ | -25.5 |
| $\left(\hat{p}_{x}^{2}-\rho\right)^{2}$ | 0 | $0.002808(2)$ | $0.15198(4)$ | $-0.4388(5)$ | -21.6 |
| $\left(\hat{p}_{x}^{2}-\rho\right)^{3}$ | 0 | $0.0004053(3)$ | 0 | $0.020998(4)$ | 32.9 |
| $\hat{E}_{x}\left(\hat{p}_{x}^{2}-\rho\right)$ | 0 | $0.01801(1)$ | $-0.20707(6)$ | $0.2961(8)$ | -39.2 |
| $\hat{E}_{x}\left(\hat{p}_{x}^{2}-\rho\right)^{2}$ | 0 | $0.0015307(10)$ | $0.06794(2)$ | $-0.1897(3)$ | -20.1 |
| $\hat{E}_{x}^{2}\left(\hat{p}_{x}^{2}-\rho\right)$ | 0 | $0.009147(6)$ | $-0.05271(2)$ | $0.0304(3)$ | 12.4 |

- Impact on the extraction of $\mu_{\pi}^{2}$ is expected to be $O(20 \%)$
- Size of corrections as estimated in kinetic scheme ( $\mu_{\pi}^{2} \pm 20 \%$ ) but they are different for the various moments
- Typical size of correction is $8 \times \frac{\alpha_{s}}{4 \pi}\left(\frac{\Lambda_{Q C D}}{m_{b}}\right)^{2}:$ one order of magnitude larger than estimate in $1 S$ fits


## Magnetic corrections: solved issues

- Diagrams with external soft gluon:

- Perform the calculation off-shell $\left(p_{b}^{2}=\left(m_{b} v \pm r / 2\right)^{2} \neq m_{b}^{2}\right)$
- Expansion in the residual momentum to linear order
- Phase space parametrization with off-shell gluon $\left(p_{g}^{2} \neq 0\right)$
- The external gluon is slightly off-shell $\Rightarrow$ use background field gauge


## Magnetic corrections: solved issues

- Two operators have non vanishing projection onto $\bar{u}_{v}\left[\psi_{\perp}, \not \oint_{\perp}\right] u_{v}$ :

$$
\begin{aligned}
O_{\mathrm{mag}} & =\frac{g_{s}}{2} \bar{h}_{v} \sigma_{\mu \nu} G^{\mu \nu} h_{v} \\
O^{\mathrm{EOM}} & =\frac{1}{m_{b}} \mathcal{L}_{\mathrm{HQET}}=\frac{1}{m_{b}} \bar{h}_{v} i v \cdot D h_{v}+\frac{1}{2 m_{b}^{2}} \bar{h}_{v}\left(i D_{\perp}\right)^{2} h_{v}+\frac{g_{s}}{4 m_{b}^{2}} \bar{h}_{v} \sigma_{\mu \nu} G^{\mu \nu} h_{v}
\end{aligned}
$$

$\Rightarrow$ calculate matrix elements with gluons polarized in both the transverse $\left(\epsilon_{\perp} \cdot v=0\right)$ and $v^{\mu}$ directions ( $\left.\epsilon_{\|}^{\mu}=\left(\epsilon_{\|} \cdot v\right) v^{\mu}\right)$ and subtract

- External legs emissions contribute to the matching onto the chromomagnetic operator (because of the $r$ expansion)



## Phase space parametrization

$$
\int\left[\mathrm{d} \Pi_{b \rightarrow c+g+\ell+\bar{\nu}}\right]=\int \frac{d p_{X}^{2}}{2 \pi} \int\left[\mathrm{~d} \Pi_{b \rightarrow X+\ell+\nu}\right] \int\left[\mathrm{d} \Pi_{X \rightarrow c+8}\right]
$$

- Two body phase space:

$$
\begin{aligned}
& \int \frac{d p_{c}^{2}}{2 \pi} \int \frac{d p_{g}^{2}}{2 \pi} \int\left[d \Pi_{x \rightarrow c+g}\right]=\frac{1}{4(2 \pi)^{d-2}} \int \frac{d p_{c}^{2}}{2 \pi} \int \frac{d p_{g}^{2}}{2 \pi} \int d \cos \theta_{2} \frac{\sin ^{d-4} \theta_{2} \mid \overrightarrow{p_{g}} \|^{d-2}}{E_{x}\left|\vec{p}_{g}\right|-\cos \theta_{2} E_{g} \vec{p}_{x}} \int d^{d-2} p_{\perp} \\
& p_{g}=\left(E_{g}, 0,0,0\right)+\left|\vec{p}_{g}\right| \cos \theta_{2}\left(0, \frac{\vec{p}_{x}}{\left|\overrightarrow{x p}_{x}\right|}\right)+\left|\vec{p}_{g}\right| \sin \theta_{2}\left(0, \vec{p}_{\perp}\right) \\
& \left|\vec{p}_{g}\right|=\frac{E_{x} \sqrt{\left(p_{x}^{2}-p_{c}^{2}\right)^{2}-2\left(p_{c}^{2}+p_{x}^{2}+2 \sin ^{2} \theta_{2} \vec{p}_{x}^{x}\right) p_{g}^{2}+p_{g}^{4}}+\cos \theta_{2}\left(p_{x}^{2}-p_{c}^{2}+p_{g}^{2}| | \vec{p}_{x} \mid\right.}{2\left(p_{x}^{2}+\sin ^{2} \theta_{2} \vec{p}_{x}^{2}\right)}
\end{aligned}
$$

- In the calculation of the diagrams we encounter terms proportional to $\delta\left(p_{c}^{2}-m_{c}^{2}\right) \delta\left(p_{g}^{2}\right), \delta^{\prime}\left(p_{c}^{2}-m_{c}^{2}\right) \delta\left(p_{g}^{2}\right)$ and $\delta\left(p_{c}^{2}-m_{c}^{2}\right) \delta^{\prime}\left(p_{g}^{2}\right)$
- There are some subtleties in the calculation of $\delta^{\prime}\left(p_{g}^{2}\right)$ (boundary of the three body phase space integration is $p_{g}^{2}$ dependent)


## Status and TODO

- Calculation of real and virtual corrections is completed
- Missing steps:

Q Renormalization in the full theory (UV divergencies of the diagrams)

Q Renormalization in the effective theory (IR divergencies of the diagrams): possible issue with the presence of $O^{\mathrm{EOM}}$ and its mixing with $O_{\text {mag }}$

- Implementation in global fit
- Calculation of Darwin corrections $\left(k^{2}(v \cdot k)\right)$ not too complicated

