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The role of V,, and Vg

e Inclusive and exclusive . .
determinations of Ve and Vb exclusive V¢, and Vb
are about 20 apart. |

Vb is critical to establish the
presence of NP in the UT

Vuw is measured in tree level
processes that are not expected
to be sensitive to NP. Its value
is essential in order to decide
whether we have effects in K
or B mixing.




Operator Product Expansion
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e Known perturbative orders (p = mZ/m3):

f(,O) ark| f(O) (,0) ,0) s Oég f(2) (/0) [Melnikov}
[Becher, Boos, EL]

almost complete [Becher, Lange, EL]

possible with the techniques
described in this talk

OQ /m; ) also known at tree-level [Dassinger, Mannel, Turczyk]

e Non-perturbative matrix elements definitions:
—(BIR,GD?h|B) 2= Lg%k 0, coh, B




Calculations at O(a,/m;)
[Becher, Boos, EL; Becher, Lange, EL}

e Expected to be of the same order as NNLO corrections

e Corrections to the kinetic and chromo-magnetic operators:

Expand at O(r?) Expand at O(r)
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[Completel [Almost complete}




Kinetic corrections: methods

e Expand the 1-loop rate at second order in the residual
momentum ( pj = myv” 4 1)

e In the kinetic case we can choose whether to expand before
or after loop integration

¢ After: subtle but simpler. Requires only leading partonic
rate at 1-loop and PS parametrization

¢ Before: more complicated. Useful as check and as test
ground to tackle magnetic corrections




Expansion after loop integration

¢ The hadronic rate can be written as: [Manohar, Wisel
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where © = 2E, /my, y = 2E./my and §% = (pe +p,,)2/m§

e Integrating by parts one gets (with a cut y, on Eo):
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o Insert Phase Space parametrization (z and §%are functions of )

e Derivatives act on the whole integrand (including 2"y (G%)")




Expansion before loop integration

We use on shell b-quarks: p; = (myv +7)> =m; = v-r=—r’/(2m)

The partonic rate expanded in 7" and averaged over 7| is:
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Replacing b-quark with B-meson matrix elements we get:
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Atfter the expansion the structure of the result is

d"'pe A 'p,
eSO

where f; contain integration over Feynman parameters (virtual
corrections) or gluon momentum (real corrections)
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Expansion before loop integration

e Evaluation of delta functions require phase space parametrization

with off-shell charm quark:
d d?
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where [dI1] is the complete b — ¢ e v (g) phase space with p; # m

Requirements on the measure parametrization:
¢ map both phase-space and loop integration on the unit hypercube
¢ use lepton energy as variable for easy implementation of cut

¢ restrict IR divergences to a single variable




Phase space parametrization

f [de—>c+g+f+T/] 3

e Three body phase space:
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¢ IR divergences in real corrections are controlled by

By — o7 = Xa(l = p— )




Phase space parametrization
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e Two body phase space:
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e All kin. quantities are expressed in terms of the integration variables
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e IR divergences appear in the limit £, o< Ay — 0:
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Summary of calculation

e Lo 7 )G

Expansion in the residual momentum = ")

Phase space parametrization

Evaluation of '™ (p?) for real and virtual contributions
Isolation of IR divergences in real diagrams

Renormalization (ILarin convention for axial current in d dimensions)

hurrah!




Kinetic corrections: results

e Moments with non vanishing leading power contributions (E; > 1 GeV):

2 2
s Mo s Mr
1 T 2mg T Zmz %

0.5149(3)  —0.910(3)  —0.5692(6)  0.987(8) 0.1
0.1754(1)  —0.314(1) 0.0109(3)  —0.024(3) 0.
0.06189(5)  —0.1128(5)  0.1105(1)  —0.202(1)
0.02251(2)  —0.0418(2)  0.09269(5) —0.1722(7)
0.2111(1)  —0.365(1)  —0.5694(2)  1.010(3)
0.08917(7)  —0.1482(7)  —0.3378(1)  0.576(1) .
0.03867(4)  —0.0606(4) —0.16898(6)  0.2639(7) .

e Effects are tiny as expected

e Impact on the extraction of V¢, should be small




Kinetic corrections: results

e Hadronic moments with no leading power contributions (E; > 1 GeV ):

2 2
Qs Hr Qs Mg %
s 2mg i 2m§

0.03618(2)  —0.6855(2)  1.213(2)
0.002808(2)  0.15198(4)  —0.4388(5)
0.0004053(3) 0 0.020998(4)

0.01801(1)  —0.20707(6)  0.2961(8)

0.0015307(10)  0.06794(2)  —0.1897(3)

0.009147(6)  —0.05271(2)  0.0304(3)

e Impact on the extraction of 12 s expected to be O(20%)

| \ ] : . L )
e Size of corrections as estimated in kinetic scheme (15 £ 20%) but
they are different for the various moments
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larger than estimate in 1S fits




Magnetic corrections: solved issues

e Diagrams with external soft gluon:

r X r r
mpv 5 § mpv 9 mpv 9 g

Perform the calculation off-shell (p% = (mpv L1/ 2)2 7 m%)

Expansion in the residual momentum to linear order
Phase space parametrization with off-shell gluon (p; # 0)

The external gluon is slightly off-shell = use background field gauge




Magnetic corrections: solved issues

e Two operators have non vanishing projection onto Uy |1 , €1 |y

Ml 928 hu0 i G*

| deny
opom _ L/ ——h D hy + =—=hy, (iD1)? h, > hy 0, G* hy
o HQET . 0 - i 2mb (Z L) i 4mb o
= calculate matrix elements with gluons polarized in both the
transverse (€L -v =0) and v*directions (€} = (¢ - v)v*) and subtract

e External legs emissions contribute to the matching onto the
chromomagnetic operator (because of the r expansion)




Phase space parametrization
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e Two body phase space:
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e In the calculation of the diagrams we encounter terms
proportional to d(p; — m2)d(p;), &' (p; — mZ)d(p;) and 6(p? — m2)d' (p)

e There are some subtleties in the calculation of §'(p;) (boundary of
the three body phase space integration is p; dependent)




Status and TODO

Calculation of real and virtual corrections is completed
Missing steps:

¢ Renormalization in the full theory (UV divergencies of the
diagrams)

¢ Renormalization in the effective theory (IR divergencies of the
diagrams): possible issue with the presence of OEOM and its mixing
with Omag

Implementation in global fit

Calculation of Darwin corrections (k*(v - k) ) not too complicated




