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• Vcb is the dominant source of uncertainty on       :
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The role of         and Vub Vcb

εK

|εK | = κεCεB̂K |Vcb|
2λ2η

(
|Vcb|

2(1− ρ̄)ηttS0(xt) + ηctS0(xc, xt)− ηccxc

)

total
Vcb only
BK only



The role of         and 
• Inc lus ive and exc lus ive 

determinations of Vcb and Vub 
are about 2σ apart.

• Vcb is critical to establish the 
presence of NP in the UT

• Vub is measured in tree level 
processes that are not expected 
to be sensitive to NP.  Its value 
is essential in order to decide 
whether we have effects in K 
or B mixing.

Vub Vcb

exclusive Vcb and Vub

inclusive Vcb and Vub



Operator Product Expansion

• Known perturbative orders (                    ):

Γ =
GF |Vcb|2m5

b

192π3

{
f(ρ) + κ(ρ)

µ2
π

2m2
b

+ g(ρ)
µ2

G

2m2
b

+ d(ρ)
ρ3

D

m3
b

+ l(ρ)
ρ3
LS

m3
b

)

}

f(ρ) = f (0)(ρ) + αs f (1)(ρ) + α2
s f (2)(ρ)

l(ρ) = l(0)(ρ)

almost complete [Becher, Lange, EL]

• Non-perturbative matrix elements definitions:
µ2

π = − 1
2MB

〈B̄|h̄v(iD)2hv|B̄〉 µ2
G =

1
2MB

〈B̄|gs

2
h̄vσµνGµνhv|B̄〉

O(          ) also known at tree-level [Dassinger, Mannel, Turczyk]1/m4
b

[Becher, Boos, EL]

[Melnikov]

κ(ρ) = κ(0)(ρ) + αs κ(1)(ρ)

g(ρ) = g(0)(ρ) + αs g(1)(ρ)

possible with the techniques 
described in this talk

d(ρ) = d(0)(ρ) + αs d(1)(ρ)

ρ = m2
c/m2

b



Calculations at 
• Expected to be of the same order as NNLO corrections

• Corrections to the kinetic and chromo-magnetic operators:

Expand at  Expand at  

h̄v(iD)2hv
gs

2
h̄vσµνGµνhv

[Becher, Boos, EL; Becher, Lange, EL]

[Complete] [Almost complete]

O(αs/m2
b)

mbv + r mbv −
r

2

r

O(r)O(r2)



• Expand the 1-loop rate at second order in the residual 
momentum (                              )

• In the kinetic case we can choose whether to expand before
or after loop integration

After: subtle but simpler. Requires only leading partonic 
rate at 1-loop and PS parametrization

Before: more complicated. Useful as check and as test 
ground to tackle magnetic corrections 

Kinetic corrections: methods

pµ
b = mbv

µ + rµ



Expansion after loop integration
• The hadronic rate can be written as:

dΓ
dxdy dq̂2

=
[
1 +

µ2
π

2m2
b

(
−1 + x

∂

∂x
+ y

∂

∂y
+

1
3

x2 ∂2

∂x2
+

1
3

y2 ∂2

∂y2
+

2
3
(xy − 2q̂2)

∂2

∂x∂y

)]
dΓpartonic

dxdy dq̂2

where                        ,                         and  x = 2Eν/mb y = 2Ee/mb q̂2 = (pe + pν)2/m2
b

• Integrating by parts one gets (with a cut y0 on Ee):

Figure 2: One-loop contributions to the hadronic tensor.

one finds

[

xn ym (q̂2)l
]

y0
=
[

xn ym (q̂2)l
]partonic

y0

+
µ2π
6m2

b

[(

(n + m)2 + 2m + 2n − 3
)

xn ym (q̂2)l − 4mn xn−1 ym−1 (q̂2)l+1
]partonic

y0

+
µ2π
6m2

b

[(

(m + 2n + 1)xy0 − 4nq̂2
)

xn−1ym0 (q̂
2)l δ(y − y0) + xnym+20 (q̂2)lδ′(y − y0)

]partonic
. (22)

The terms in the third line are boundary terms and vanish when setting y0 = 0. In this case the kinetic

corrections to the moments follow via simple algebraic relations from the leading power term. The

explicit relations for the moments we are interested in are given in Appendix A. In the general case

with a cut on the lepton energy y0 ! 0, one needs to also evaluate moments of the partial rate and its

first derivative. To evaluate these boundary terms, it is important to keep in mind that q̂2, x and y are

not completely independent: the rate includes a factor θ(xy − q̂2) and at the tree level the variables
fulfill 1− ρ + q̂2 = x+ y. More generally, when choosing a phase space parameterization to evaluate
(22) the variables q̂2 and x become functions of y and the derivative in the third line of (22) then acts

not only on the rate but also on the factors xa(q̂2)b.

3 Phase-space and loop integrals

We now derive phase-space representations which are well suited for the numerical calculation of

the kinetic corrections at one loop. The diagrams contributing to the hadronic tensor are shown

in Figure 2. Their imaginary part receives contributions from virtual corrections as well as real

emission contributions. In the real emission contributions, the imaginary part of the diagram is

generated by an intermediate state with an on-shell gluon and on-shell charm quark, so we will need

a parameterization of the b→ c + g + % + ν phase space. The loop integrations necessary to evaluate
the virtual corrections contain UV as well as IR divergences. The real part is ultraviolet finite, but

contains IR divergences which cancel against the IR divergences of the virtual corrections. Because

the quarks are massive, soft gluons are the only source of infrared divergences at one loop.

To allow for a simple numerical evaluation, we map the phase space and loop integrations to the

unit hypercube. Also, since we want to calculate the rate and spectral moments with a cut on the

lepton energy, we choose a parameterization in which the lepton energy is one of the variables. A

last requirement is that we want the infrared divergences to be restricted to a single variable, so that

7

• Insert Phase Space parametrization (   and     are functions of   )

• Derivatives act on the whole integrand (including                    ) 
x q̂2 y

xnym(q̂2)l

[Manohar,Wise]



Expansion before loop integration
• We use on shell b-quarks:                                       ⇒

• Replacing b-quark with B-meson matrix elements we get:

v · r = −r2/(2mb)

• The partonic rate expanded in    and averaged over       is: r r⊥

one first removes a rapidly oscillating factor from the b-quark field by writing it as b(x) = e−imvxbv(x).

Using heavy-quark effective theory [45, 44], all the matrix elements necessary to second order in the

expansion can be reduced to

〈O3〉 ≡
1

2MB

〈B̄(pB)| bv v/ bv |B̄(pB)〉 = 1 ,

〈Okin〉 ≡
1

2MB

〈B̄(pB)| b̄v(iD)2bv |B̄(pB)〉 = −µ2π , (9)

〈Omag〉 ≡
1

2MB

〈B̄(pB)| b̄v
g

2
σµνG

µνbv |B̄(pB)〉 = µ2G .

Up to terms suppressed by three powers of the heavy quark mass, the decay rate thus takes the form

dΓ =
G2F |Vcb|

2

2
dµ(p$) dµ(pν)

[

C3(v, p$, pν) 〈O3〉 +Ckin(v, p$, pν) 〈Okin〉 +Cmag(v, p$, pν) 〈Omag〉
]

.

The Wilson coefficients Ci(v, p$, pν) of the three operators are independent of the external states and
can be calculated using partonic initial and final states. To extract the coefficient Ckin(v, p$, pν) of
the kinetic operator, it is simplest to use an on-shell b-quark with momentum pb = mbvµ + rµ, which

amounts to calculating the partonic decay rate b→ Xc$ν. To find the coefficient of the operator Okin
with two derivatives, we expand the partonic rate to second order in the residual momentum rµ. The

result takes the form

dΓpartonic = A + Aµ
1

mb

rµ + Aµν
1

m2
b

rµrν + O(r3) . (10)

At the loop level, the question arises whether to expand the diagrams before or after the loop inte-

gration. In general, either choice is valid as long as one evaluates the loop corrections to the operator

product and to the matrix elements of the local operatorsOi in the same way. In our case the situation

is especially simple: since we perform the matching calculation on-shell, the one-loop corrections to

the matrix elements of the operatorsOi vanish and the loop integration commutes with the expansion

in the residual momentum. To have a check of our results, we will evaluate the corrections in both

ways.

We can further simplify the calculation by averaging over the direction of the transverse momen-

tum r
µ
⊥ = r

µ − v · r vµ. The component parallel to vµ is fixed by the on-shell condition 2mbv · r = −r2.
Taking the average we have

dΓpartonic = A − Aµ vµ
r2

2m2
b

+ Aµν
r2

m2
b

1

d − 1
(gµν − vµvν) + O(r3) . (11)

To obtain the hadronic rate, we first bring the leading power partonic matrix element into the form

(9) by rewriting

〈b(pb)| b̄v bv |b(pb)〉 =
1

mb

〈b̄(pb)| b̄v p/b bv |b̄(pb)〉

= 〈b(pb)| b̄v v/ bv |b̄(pb)〉 +
r2

2m2
b

〈b̄(pb)| b̄v bv |b(pb)〉 . (12)

4

dΓ = A− µ2
π

2m2
b

[
A−Aµ vµ + Aµν

2
d− 1

(gµν − vµvν)
]

• After the expansion the structure of the result is

dΓ ∝ dd−1pe

2Ee

dd−1pν

2Eν

[
f0 δ

(
p2

c −m2
c

)
+ f1 δ′

(
p2

c −m2
c

)
+ f2 δ′′

(
p2

c −m2
c

)
]

where     contain integration over Feynman parameters (virtual 
corrections) or gluon momentum (real corrections)

fi

p2
b = (mbv + r)2 = m2

b



Expansion before loop integration
• Evaluation of delta functions require phase space parametrization 

with off-shell charm quark:

where        is the complete                      phase space with [dΠ]

Γ ∝
∫

[dΠ] f0

∣∣∣∣
p2

c=m2
c

− d
dp2

c

∫
[dΠ] f1

∣∣∣∣
p2

c=m2
c

+
d2

d(p2
c)2

∫
[dΠ] f2

∣∣∣∣
p2

c=m2
c

,

b→ c e ν (g) p2
c != m2

c

• Requirements on the measure parametrization:

map both phase-space and loop integration on the unit hypercube

use lepton energy as variable for easy implementation of cut

restrict IR divergences to a single variable



Phase space parametrization

• Three body phase space:

they are easily isolated. It is convenient to split the phase space integral into a hadronic and leptonic

part
∫

[

dΠb→c+g+!+ν̄
]

=

∫

dp2X

2π

∫

[dΠb→X+!+ν]

∫

[

dΠX→c+g
]

. (23)

3.1 Three-body phase space b→ X + ! + ν̄

We neglect the lepton masses and parameterize the momenta as

pb = (mb, 0, 0, 0) , p! = (E!, 0, 0, E!) , pν = (Eν, Eν sin θ1, 0, Eν cos θ1) . (24)

and

E! = mb

y

2
, Eν = mb

(1 − ρ − y) (1 − λ2)
2κ

, cos θ1 = 2λ3 − 1 . (25)

with

ρ =
m2c

m2
b

, κ = 1 − (1 − cos θ1) y/2 , (26)

where we have omitted factors of mb which can be reinstated using dimensional analysis. The d-

dimensional solid angle is

Ωd =
2πd/2

Γ(d/2)
. (27)

In terms of these quantities, the phase-space integral in d = 4 − 2ε reads

∫ m2
b

m2c

dp2x

2π

∫

[dΠb→x+!+ν̄]

=
Ωd−1Ωd−2

2d+1(2π)2d−2

∫ 1−ρ

0

dy

∫ 1

0

dλ2dλ3(1 − ρ − y)2−2εκ2ε−2 (y(1 − λ2))1−2ε ((1 − λ3)λ3)−ε . (28)

In the presence of a cut on the lepton energy y > y0, the transformation y = (1 − ρ − y0)λ1 + y0 maps
the integration to the unit cube. It is simple to obtain the tree-level phase space from this result. To

this end, one multiplies with 2πδ(p2x − m2c) = 2πδ ((1 − ρ − y)λ2) and integrates over λ2.

3.2 Two-body phase space x→ c + g

We split the gluon three-momentum into a part in the direction of *px

pg = (Eg, 0, 0, 0) + Eg cos θ2 (0,
*px
|*px|

) + Eg sin θ2 (0, *p⊥) (29)

and an orthogonal part with *p⊥ · *px = 0 and *p2⊥ = 1. Expressed in terms of of these quantities, the
two-body phase space is

∫

[

dΠx→c+g
]

=
1

2(2π)d−2

∫

d cos θ2
sind−4θ2 E

d−2
g

p2x − m2c

∫

dd−2*p⊥ . (30)

8

∫ m2
b

m2
c

dp2
x

2π

∫
[dΠb→x+!+ν̄ ]

=
Ωd−1Ωd−2 m4−4ε

b

2d+1(2π)2d−2

∫ 1−ρ

0
dy

∫ 1

y0

dλ2dλ3(1− ρ− y)2−2εκ2ε−2 (y(1− λ2))
1−2ε ((1− λ3)λ3)

−ε

where pb = (mb, 0, 0, 0) p! = (E!, 0, 0, E!) pν = (Eν , Eν sin θ1, 0, Eν cos θ1)

E! = mb
y

2
Eν = mb

(1− ρ− y) (1− λ2)
2κ

cos θ1 = 2λ3 − 1

ρ =
m2

c

m2
b

κ = 1− (1− cos θ1) y/2 Ωd =
2πd/2

Γ(d/2)

IR divergences in real corrections are controlled by 
Eg ∝ p2

X − ρ2 = λ2(1− ρ− y)



Phase space parametrization

• Two body phase space:

they are easily isolated. It is convenient to split the phase space integral into a hadronic and leptonic

part
∫

[

dΠb→c+g+!+ν̄
]

=

∫

dp2X

2π

∫

[dΠb→X+!+ν]

∫

[

dΠX→c+g
]

. (23)

3.1 Three-body phase space b→ X + ! + ν̄

We neglect the lepton masses and parameterize the momenta as

pb = (mb, 0, 0, 0) , p! = (E!, 0, 0, E!) , pν = (Eν, Eν sin θ1, 0, Eν cos θ1) . (24)

and

E! = mb

y

2
, Eν = mb

(1 − ρ − y) (1 − λ2)
2κ

, cos θ1 = 2λ3 − 1 . (25)

with

ρ =
m2c

m2
b

, κ = 1 − (1 − cos θ1) y/2 , (26)

where we have omitted factors of mb which can be reinstated using dimensional analysis. The d-

dimensional solid angle is

Ωd =
2πd/2

Γ(d/2)
. (27)

In terms of these quantities, the phase-space integral in d = 4 − 2ε reads

∫ m2
b

m2c

dp2x

2π

∫

[dΠb→x+!+ν̄]

=
Ωd−1Ωd−2

2d+1(2π)2d−2

∫ 1−ρ

0

dy

∫ 1

0

dλ2dλ3(1 − ρ − y)2−2εκ2ε−2 (y(1 − λ2))1−2ε ((1 − λ3)λ3)−ε . (28)

In the presence of a cut on the lepton energy y > y0, the transformation y = (1 − ρ − y0)λ1 + y0 maps
the integration to the unit cube. It is simple to obtain the tree-level phase space from this result. To

this end, one multiplies with 2πδ(p2x − m2c) = 2πδ ((1 − ρ − y)λ2) and integrates over λ2.

3.2 Two-body phase space x→ c + g

We split the gluon three-momentum into a part in the direction of *px

pg = (Eg, 0, 0, 0) + Eg cos θ2 (0,
*px
|*px|

) + Eg sin θ2 (0, *p⊥) (29)

and an orthogonal part with *p⊥ · *px = 0 and *p2⊥ = 1. Expressed in terms of of these quantities, the
two-body phase space is

∫

[

dΠx→c+g
]

=
1

2(2π)d−2

∫

d cos θ2
sind−4θ2 E

d−2
g

p2x − m2c

∫

dd−2*p⊥ . (30)

8

• All kin. quantities are expressed in terms of the integration variables

• IR divergences appear in the limit                    :   Eg ∝ λ2 → 0

For a given angle θ2, the gluon energy is

Eg =
p2x − m2c

2(Ex − cos θ2|"px|)
. (31)

Note that the denominators of the real emission diagrams

(pb − pg)2 − m2b = −2mbEg , (32)

(pc + pg)
2 − m2c = p

2
x − m

2
c (33)

are independent of "p⊥. The only dependence on "p⊥ arises from the scalar products with lepton

momenta in the numerator of the diagrams. The integration over the unit vector "p⊥ is therefore
trivial. The only non-vanishing integrals we need are

∫

dd−2p⊥

{

1, pi⊥p
j
⊥

}

=

{

1,
1

d − 2
δi j
}

Ωd−2 , (34)

where δi j is the metric on the (d − 2)-dimensional sub-space, with δi
i
= d − 2. For the evaluation of

the diagrams it is simplest to parameterize the vector p⊥ as

p⊥ = sin θ3 (0, 0, 1, 0) + cos θ3
1

|"px|
(0, Eνc1 + El, 0,−Eνs1) . (35)

The integrand is then a second order polynomial in cos θ3 and sin θ3 and the integral over p⊥ takes
the form

∫

dd−2p⊥

{

1, cos2 θ3

}

= Ωd−3

∫ 1

−1
d cos θ3 sin

d−5θ3

{

1, cos2 θ3

}

= Ωd−2

{

1,
1

d − 2

}

. (36)

To calculate the rate, we combine (28) with (30) and (36) and rewrite cos θ2 = 2λ4 − 1.
The point λ2 = 0 corresponds to the kinematic configuration where soft singularities occur, since

Eg ∝ p2x − m2c = (1 − ρ − y)λ2 → 0. Both propagator denominators (32) are proportional to λ2
and vanish at this point. The phase-space (28) itself is proportional to λ1−2ε

2
so that the infrared

divergences take the form
1

λ1+2ε
2

= −
1

2ε
δ(λ2) +

[

1

λ2

]

+

+ O(ε) . (37)

The above relation is easily implemented into the code for the numerical evaluation of the diagrams.

We evaluate both the divergent and the finite part numerically and check the cancellation of diver-

gences numerically.

3.3 Loop integrals

The virtual corrections involve loop-integrals

{

I, Iµ, Iµν
}

=

∫

ddk

{

1, kµ, kµkν
}

k2 (2pb · k + k2) (2pc · k + k2 + p2c − m2c)
(38)

9

they are easily isolated. It is convenient to split the phase space integral into a hadronic and leptonic

part
∫

[

dΠb→c+g+!+ν̄
]

=

∫

dp2X

2π

∫

[dΠb→X+!+ν]

∫

[

dΠX→c+g
]

. (23)

3.1 Three-body phase space b→ X + ! + ν̄

We neglect the lepton masses and parameterize the momenta as

pb = (mb, 0, 0, 0) , p! = (E!, 0, 0, E!) , pν = (Eν, Eν sin θ1, 0, Eν cos θ1) . (24)

and

E! = mb

y

2
, Eν = mb

(1 − ρ − y) (1 − λ2)
2κ

, cos θ1 = 2λ3 − 1 . (25)

with

ρ =
m2c

m2
b

, κ = 1 − (1 − cos θ1) y/2 , (26)

where we have omitted factors of mb which can be reinstated using dimensional analysis. The d-

dimensional solid angle is

Ωd =
2πd/2

Γ(d/2)
. (27)

In terms of these quantities, the phase-space integral in d = 4 − 2ε reads

∫ m2
b

m2c

dp2x

2π

∫

[dΠb→x+!+ν̄]

=
Ωd−1Ωd−2

2d+1(2π)2d−2

∫ 1−ρ

0

dy

∫ 1

0

dλ2dλ3(1 − ρ − y)2−2εκ2ε−2 (y(1 − λ2))1−2ε ((1 − λ3)λ3)−ε . (28)

In the presence of a cut on the lepton energy y > y0, the transformation y = (1 − ρ − y0)λ1 + y0 maps
the integration to the unit cube. It is simple to obtain the tree-level phase space from this result. To

this end, one multiplies with 2πδ(p2x − m2c) = 2πδ ((1 − ρ − y)λ2) and integrates over λ2.

3.2 Two-body phase space x→ c + g

We split the gluon three-momentum into a part in the direction of *px

pg = (Eg, 0, 0, 0) + Eg cos θ2 (0,
*px
|*px|

) + Eg sin θ2 (0, *p⊥) (29)

and an orthogonal part with *p⊥ · *px = 0 and *p2⊥ = 1. Expressed in terms of of these quantities, the
two-body phase space is

∫

[

dΠx→c+g
]

=
1

2(2π)d−2

∫

d cos θ2
sind−4θ2 E

d−2
g

p2x − m2c

∫

dd−2*p⊥ . (30)
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For a given angle θ2, the gluon energy is

Eg =
p2x − m2c

2(Ex − cos θ2|"px|)
. (31)

Note that the denominators of the real emission diagrams

(pb − pg)2 − m2b = −2mbEg , (32)

(pc + pg)
2 − m2c = p

2
x − m

2
c (33)

are independent of "p⊥. The only dependence on "p⊥ arises from the scalar products with lepton

momenta in the numerator of the diagrams. The integration over the unit vector "p⊥ is therefore
trivial. The only non-vanishing integrals we need are

∫

dd−2p⊥

{

1, pi⊥p
j
⊥

}

=

{

1,
1

d − 2
δi j
}

Ωd−2 , (34)

where δi j is the metric on the (d − 2)-dimensional sub-space, with δi
i
= d − 2. For the evaluation of

the diagrams it is simplest to parameterize the vector p⊥ as

p⊥ = sin θ3 (0, 0, 1, 0) + cos θ3
1

|"px|
(0, Eνc1 + El, 0,−Eνs1) . (35)

The integrand is then a second order polynomial in cos θ3 and sin θ3 and the integral over p⊥ takes
the form

∫

dd−2p⊥

{

1, cos2 θ3

}

= Ωd−3

∫ 1

−1
d cos θ3 sin

d−5θ3

{

1, cos2 θ3

}

= Ωd−2

{

1,
1

d − 2

}

. (36)

To calculate the rate, we combine (28) with (30) and (36) and rewrite cos θ2 = 2λ4 − 1.
The point λ2 = 0 corresponds to the kinematic configuration where soft singularities occur, since

Eg ∝ p2x − m2c = (1 − ρ − y)λ2 → 0. Both propagator denominators (32) are proportional to λ2
and vanish at this point. The phase-space (28) itself is proportional to λ1−2ε

2
so that the infrared

divergences take the form
1

λ1+2ε
2

= −
1

2ε
δ(λ2) +

[

1

λ2

]

+

+ O(ε) . (37)

The above relation is easily implemented into the code for the numerical evaluation of the diagrams.

We evaluate both the divergent and the finite part numerically and check the cancellation of diver-

gences numerically.

3.3 Loop integrals

The virtual corrections involve loop-integrals

{

I, Iµ, Iµν
}

=

∫

ddk

{

1, kµ, kµkν
}

k2 (2pb · k + k2) (2pc · k + k2 + p2c − m2c)
(38)

9

For a given angle θ2, the gluon energy is

Eg =
p2x − m2c

2(Ex − cos θ2|"px|)
. (31)

Note that the denominators of the real emission diagrams

(pb − pg)2 − m2b = −2mbEg , (32)

(pc + pg)
2 − m2c = p

2
x − m

2
c (33)

are independent of "p⊥. The only dependence on "p⊥ arises from the scalar products with lepton

momenta in the numerator of the diagrams. The integration over the unit vector "p⊥ is therefore
trivial. The only non-vanishing integrals we need are

∫

dd−2p⊥

{

1, pi⊥p
j
⊥

}

=

{

1,
1

d − 2
δi j
}

Ωd−2 , (34)

where δi j is the metric on the (d − 2)-dimensional sub-space, with δi
i
= d − 2. For the evaluation of

the diagrams it is simplest to parameterize the vector p⊥ as

p⊥ = sin θ3 (0, 0, 1, 0) + cos θ3
1

|"px|
(0, Eνc1 + El, 0,−Eνs1) . (35)

The integrand is then a second order polynomial in cos θ3 and sin θ3 and the integral over p⊥ takes
the form

∫

dd−2p⊥

{

1, cos2 θ3

}

= Ωd−3

∫ 1

−1
d cos θ3 sin

d−5θ3

{

1, cos2 θ3

}

= Ωd−2

{

1,
1

d − 2

}

. (36)

To calculate the rate, we combine (28) with (30) and (36) and rewrite cos θ2 = 2λ4 − 1.
The point λ2 = 0 corresponds to the kinematic configuration where soft singularities occur, since

Eg ∝ p2x − m2c = (1 − ρ − y)λ2 → 0. Both propagator denominators (32) are proportional to λ2
and vanish at this point. The phase-space (28) itself is proportional to λ1−2ε

2
so that the infrared

divergences take the form
1

λ1+2ε
2

= −
1

2ε
δ(λ2) +

[

1

λ2

]

+

+ O(ε) . (37)

The above relation is easily implemented into the code for the numerical evaluation of the diagrams.

We evaluate both the divergent and the finite part numerically and check the cancellation of diver-

gences numerically.

3.3 Loop integrals

The virtual corrections involve loop-integrals

{

I, Iµ, Iµν
}

=

∫

ddk

{

1, kµ, kµkν
}

k2 (2pb · k + k2) (2pc · k + k2 + p2c − m2c)
(38)
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they are easily isolated. It is convenient to split the phase space integral into a hadronic and leptonic

part
∫

[

dΠb→c+g+!+ν̄
]

=

∫

dp2X

2π

∫

[dΠb→X+!+ν]

∫

[

dΠX→c+g
]

. (23)

3.1 Three-body phase space b→ X + ! + ν̄

We neglect the lepton masses and parameterize the momenta as

pb = (mb, 0, 0, 0) , p! = (E!, 0, 0, E!) , pν = (Eν, Eν sin θ1, 0, Eν cos θ1) . (24)

and

E! = mb

y

2
, Eν = mb

(1 − ρ − y) (1 − λ2)
2κ

, cos θ1 = 2λ3 − 1 . (25)

with

ρ =
m2c

m2
b

, κ = 1 − (1 − cos θ1) y/2 , (26)

where we have omitted factors of mb which can be reinstated using dimensional analysis. The d-

dimensional solid angle is

Ωd =
2πd/2

Γ(d/2)
. (27)

In terms of these quantities, the phase-space integral in d = 4 − 2ε reads

∫ m2
b

m2c

dp2x

2π

∫

[dΠb→x+!+ν̄]

=
Ωd−1Ωd−2

2d+1(2π)2d−2

∫ 1−ρ

0

dy

∫ 1

0

dλ2dλ3(1 − ρ − y)2−2εκ2ε−2 (y(1 − λ2))1−2ε ((1 − λ3)λ3)−ε . (28)

In the presence of a cut on the lepton energy y > y0, the transformation y = (1 − ρ − y0)λ1 + y0 maps
the integration to the unit cube. It is simple to obtain the tree-level phase space from this result. To

this end, one multiplies with 2πδ(p2x − m2c) = 2πδ ((1 − ρ − y)λ2) and integrates over λ2.

3.2 Two-body phase space x→ c + g

We split the gluon three-momentum into a part in the direction of *px

pg = (Eg, 0, 0, 0) + Eg cos θ2 (0,
*px
|*px|

) + Eg sin θ2 (0, *p⊥) (29)

and an orthogonal part with *p⊥ · *px = 0 and *p2⊥ = 1. Expressed in terms of of these quantities, the
two-body phase space is

∫

[

dΠx→c+g
]

=
1

2(2π)d−2

∫

d cos θ2
sind−4θ2 E

d−2
g

p2x − m2c

∫

dd−2*p⊥ . (30)

8



Summary of calculation

• Diagrams: 

• Expansion in the residual momentum ⇒ 

• Phase space parametrization

• Evaluation of               for real and virtual contributions

• Isolation of IR divergences in real diagrams

• Renormalization (Larin convention for axial current in d dimensions) 

• hurrah!

Figure 2: One-loop contributions to the hadronic tensor.

The µ2
π-term without derivatives comes from expanding the matrix elements, see (12). What

makes this result particularly useful is that we can explicitly evaluate the derivatives using
integration by parts when calculating moments. For the moments with a cut on the lepton
energy

[

xn ym (q̂2)l
]

y0

=

∫

dx dy dq̂2 dΓ

dx dy dq̂2
xn ym (q̂2)lθ(y − y0) , (21)

one finds

[

xn ym (q̂2)l
]

y0

=
[

xn ym (q̂2)l
]partonic

y0

+
µ2

π

6m2
b

[(

(n + m)2 + 2m + 2n − 3
)

xn ym (q̂2)l − 4 m n xn−1 ym−1 (q̂2)l+1
]partonic

y0

+
µ2

π

6m2
b

[(

(m + 2n + 1)xy0 − 4nq̂2
)

xn−1ym
0 (q̂2)l δ(y − y0) + xnym+2

0 (q̂2)lδ′(y − y0)
]partonic

.

(22)

The terms in the third line are boundary terms and vanish when setting y0 = 0. In this case
the kinetic corrections to the moments follow via simple algebraic relations from the leading-
power term. The explicit relations for the moments we are interested in are given in Appendix
A. In the general case with a cut on the lepton energy y0 "= 0, one needs to also evaluate
moments of the partial rate and its first derivative. To evaluate these boundary terms, it is
important to keep in mind that q̂2, x and y are not completely independent: the rate includes
a factor θ(xy − q̂2) and at tree level the variables fulfill 1− m2

c

m2
b

+ q̂2 = x + y. More generally,

when choosing a phase-space parameterization to evaluate (22), the variables q̂2 and x become
functions of y and the derivative in the third line of (22) then acts not only on the rate but
also on the factors xa(q̂2)b.

3 Phase-space and loop integrals

We now derive phase-space representations which are well suited for the numerical calculation
of the kinetic corrections at one loop. The diagrams contributing to the hadronic tensor are
shown in Figure 2. Their imaginary part receives contributions from virtual corrections as
well as real-emission contributions. In the real-emission contributions, the imaginary part of
the diagram is generated by an intermediate state with an on-shell gluon and on-shell charm

7

δ(n)(p2
c)

δ(n)(p2
c)
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Results for Partonic Moments

Small correction for moments which are of “natural size”.

Expect chromo-magnetic corrections to be more 
important, since tree-level corrections are few times larger.

Êl = El/mb > 1/4.6with cut and
mc

mb
= 1/4

αs

π
≈ 0.07

µ2
π

2m2
b

≈ 0.01

1 αs

π
µ2

π

2m2

b

αs

π
µ2

π

2m2

b

%

1 0.5149(3) −0.910(3) −0.5692(6) 0.987(8) 0.1

Êl 0.1754(1) −0.314(1) 0.0109(3) −0.024(3) 0.

Ê2
l 0.06189(5) −0.1128(5) 0.1105(1) −0.202(1) −0.2

Ê3
l 0.02251(2) −0.0418(2) 0.09269(5) −0.1722(7) −0.6

Êx 0.2111(1) −0.365(1) −0.5694(2) 1.010(3) 0.4

Ê2
x 0.08917(7) −0.1482(7) −0.3378(1) 0.576(1) 0.5

Ê3
x 0.03867(4) −0.0606(4) −0.16898(6) 0.2639(7) 0.5

16

Kinetic corrections: results
• Moments with non vanishing leading power contributions (                  ): 

• Effects are tiny as expected

• Impact on the extraction of  Vcb should be small 

E! > 1 GeV
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Results for Partonic Moments

Large corrections for those moments that vanish at leading 
power.

The corrections will change the extracted value of !"2 
by about 20-30% in the pole scheme (maybe less with a 
better scheme).

Êl = El/mb > 1/4.6with cut and
mc

mb
= 1/4

αs

π
≈ 0.07

µ2
π

2m2
b

≈ 0.01

1 αs

π
µ2

π

2m2

b

αs

π
µ2

π

2m2

b

%

1 0.5149(3) −0.910(3) −0.5692(6) 0.987(8) 0.1

Êl 0.1754(1) −0.314(1) 0.0109(3) −0.024(3) 0.

Ê2
l 0.06189(5) −0.1128(5) 0.1105(1) −0.202(1) −0.2

Ê3
l 0.02251(2) −0.0418(2) 0.09269(5) −0.1722(7) −0.6

Êx 0.2111(1) −0.365(1) −0.5694(2) 1.010(3) 0.4

Ê2
x 0.08917(7) −0.1482(7) −0.3378(1) 0.576(1) 0.5

Ê3
x 0.03867(4) −0.0606(4) −0.16898(6) 0.2639(7) 0.5

(p̂2
x − ρ) 0 0.03618(2) −0.6855(2) 1.213(2) −25.5

(p̂2
x − ρ)2 0 0.002808(2) 0.15198(4) −0.4388(5) −21.6

(p̂2
x − ρ)3 0 0.0004053(3) 0 0.020998(4) 32.9

Êx(p̂2
x − ρ) 0 0.01801(1) −0.20707(6) 0.2961(8) −39.2

Êx(p̂2
x − ρ)2 0 0.0015307(10) 0.06794(2) −0.1897(3) −20.1

Ê2
x(p̂

2
x − ρ) 0 0.009147(6) −0.05271(2) 0.0304(3) 12.4

Table 2: Coefficients of the perturbative and power corrections to the the moments (41) with
4.6Êl > 1 and mc/mb = 1/4. Perturbative corrections are given in units of αs/π, the power
corrections in units of µ2

π/(2m2
b). All entries need to be multiplied by the common factor

G2
F |Vcb|2m5

b/(192π3). The numbers in the table correspond to the partonic moments in the
pole scheme. The last column gives the relative size of the kinetic O(αs) corrections for default
values of the parameters, see text.

numerical results for arbitrary cut energies and charm-mass values can be obtained from the
authors.

Instead of the partonic moments, experimental papers present results for the normalized
hadronic moments

〈

w(El, EX , p2
X)

〉

=
1

Γ(El > E0)

∫ Emax

E0

dEl

∫

dEX dp2
X

dΓ

dEX dp2
X dEl

w(El, EX , p2
X) . (42)

To translate the results to hadronic kinematics we note that leptonic quantities are identical
on the hadronic and partonic level. Using that the B-meson momentum is pµ

B = MB vµ, it
follows that

EX = MB − v · q = MB − mb + Ex , (43)

p2
X = (pB − q)2 = p2

x + 2Ex(MB − mb) + (MB − mb)
2 . (44)

With these two equations, it is straightforward to translate our partonic results into hadronic
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1 αs

π
µ2

π

2m2

b

αs

π
µ2

π

2m2

b

%

1 0.5149(3) −0.910(3) −0.5692(6) 0.987(8) 0.1

Êl 0.1754(1) −0.314(1) 0.0109(3) −0.024(3) 0.
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l 0.06189(5) −0.1128(5) 0.1105(1) −0.202(1) −0.2

Ê3
l 0.02251(2) −0.0418(2) 0.09269(5) −0.1722(7) −0.6

Êx 0.2111(1) −0.365(1) −0.5694(2) 1.010(3) 0.4

Ê2
x 0.08917(7) −0.1482(7) −0.3378(1) 0.576(1) 0.5

Ê3
x 0.03867(4) −0.0606(4) −0.16898(6) 0.2639(7) 0.5

(p̂2
x − ρ) 0 0.03618(2) −0.6855(2) 1.213(2) −25.5

(p̂2
x − ρ)2 0 0.002808(2) 0.15198(4) −0.4388(5) −21.6

(p̂2
x − ρ)3 0 0.0004053(3) 0 0.020998(4) 32.9

Êx(p̂2
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Ê2
x(p̂
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x − ρ) 0 0.009147(6) −0.05271(2) 0.0304(3) 12.4

Table 2: Coefficients of the perturbative and power corrections to the the moments (41) with
4.6Êl > 1 and mc/mb = 1/4. Perturbative corrections are given in units of αs/π, the power
corrections in units of µ2

π/(2m2
b). All entries need to be multiplied by the common factor

G2
F |Vcb|2m5

b/(192π3). The numbers in the table correspond to the partonic moments in the
pole scheme. The last column gives the relative size of the kinetic O(αs) corrections for default
values of the parameters, see text.

numerical results for arbitrary cut energies and charm-mass values can be obtained from the
authors.

Instead of the partonic moments, experimental papers present results for the normalized
hadronic moments

〈

w(El, EX , p2
X)

〉

=
1

Γ(El > E0)

∫ Emax

E0

dEl

∫

dEX dp2
X

dΓ

dEX dp2
X dEl

w(El, EX , p2
X) . (42)

To translate the results to hadronic kinematics we note that leptonic quantities are identical
on the hadronic and partonic level. Using that the B-meson momentum is pµ

B = MB vµ, it
follows that

EX = MB − v · q = MB − mb + Ex , (43)

p2
X = (pB − q)2 = p2

x + 2Ex(MB − mb) + (MB − mb)
2 . (44)

With these two equations, it is straightforward to translate our partonic results into hadronic

12

17

• Impact on the extraction of        is expected to be 

Kinetic corrections: results
• Hadronic moments with no leading power contributions (                  ): E! > 1 GeV

• Size of corrections as estimated in kinetic scheme (                  ) but 
they are different for the various moments 

µ2
π ± 20%

µ2
π O(20%)

• Typical size of correction is                         : one order of magnitude 
larger than estimate in      fits

8× αs

4π

(
ΛQCD

mb

)2

1S



Magnetic corrections: solved issues
• Diagrams with external soft gluon:

p2
g != 0

p2
b = (mbv ± r/2)2 != m2

b

mbv −
r

2

r

mbv +
r

2

• Perform the calculation off-shell (                                           )

• Expansion in the residual momentum to linear order

• Phase space parametrization with off-shell gluon (            )

• The external gluon is slightly off-shell ⇒ use background field gauge

mbv −
r

2

r

mbv +
r

2
mbv −

r

2

r

mbv +
r

2



Magnetic corrections: solved issues
• Two operators have non vanishing projection onto                         :

it is simplest to consider the b → b + g matrix element. The relevant QCD diagrams have the
form

ū(p′b) Γ̃u(pb) = ūv(r
′) Γ uv(r) (24)

with pb = mbv + r, p′b = mbv + r′. The HQET spinors uv(r) fulfill /vuv(r) = uv(r). The matrix
Γ is obtained as

Γ = P+ (1 +
/r′

2mb
) Γ̃ (1 +

/r

2mb
) P+ (25)

where P+ = 1+v/
2 . The prefactors multiplying Γ̃ arise from converting the relativistic spinors

to the ones in the effective theory: u(pb) = (1 +
/r

2mb
) uv(r).

We are interested in the matching coefficient of the chromomagnetic operator whose b →
b + g matrix element is

〈Omag〉 = 〈σµνG
µν〉 = ūv(r

′) [/k, /ε] uv(r) = ūv(r
′) [/k⊥, /ε⊥] uv(r) (26)

where k = r′ − r = p′b − pb is gluon momentum. To extract the Wilson coefficient, we choose
the gluon to have transverse polarization ε · v = 0 so that εµ = εµ

⊥ and then expand the QCD
diagrams to linear order in the gluon momentum kµ. The terms independent of k cannot
contribute to the chromomagnetic operator we are interested in and the terms with higher
powers of k match onto higher dimensional operators.

Note that the gluon in our calculation slightly off shell. More precisely, we do not calculate,
b → b + g, but the b → b matrix element in the presence of a classical background gluon field.
To ensure gauge invariance, we will perform the calculation using background gauge. As a
related complication, there is an additional operator

OEOM =
1

mb
LHQET =

1

mb
h̄v iv · D hv +

1

2m2
b

h̄v (iD⊥)2 hv +
gs

4m2
b

h̄v σµνG
µν hv + . . . (27)

which can be added to the OPE. Its physical matrix elements vanish so that the operator
will not contribute to the inclusive B-decay rate. However, the operator does occur in our
matching calculation. Obviously, the matrix element of OEOM has terms which have the same
structure as (26), and we need to make sure that we extract the coefficient of Omag and not
OEOM. The QCD calculation of the diagrams for the emission of a perpendicular gluon εµ

⊥
will determine only the sum of the corresponding Wilson coefficients. To extract the Wilson
coefficient of Omag, we first obtain the Wilson coefficient of OEOM, by calculating diagrams
with the emission of an external gluon polarized in the vµ direction.

2.1 Dirac structure

Let us discuss the possible Dirac structures appearing in the evaluation of QCD the diagrams.
First of all, we use the Larin prescription to eliminate γ5 so that the trace is well defined in
d dimensions [46] and is given by products of matrices γµ. Since the matrix Γ is sandwiched
between the projectors which fulfill /vP+ = /vP+, we can write the product in terms of the
matrices γ⊥

µ = γµ−/vvµ. A basis of such matrices in d-dimensions is given by all antisymmetric
products

1, γ⊥
µ , γ⊥

[µ1µ2], γ
⊥
[µ1µ2µ3], γ

⊥
[µ1µ2µ3µ4], . . . , (28)

5

⇒ calculate matrix elements with gluons polarized in both the 
transverse (              ) and     directions (                    ) and subtractε⊥ · v = 0 vµ εµ

‖ = (ε‖ · v)vµ

• External legs emissions contribute to the matching onto the 
chromomagnetic operator (because of the    expansion)

ūv[/r⊥, /ε⊥]uv

r

Omag =
gs

2
h̄vσµνGµνhv



Phase space parametrization

• Two body phase space:

they are easily isolated. It is convenient to split the phase space integral into a hadronic and leptonic

part
∫

[

dΠb→c+g+!+ν̄
]

=

∫

dp2X

2π

∫

[dΠb→X+!+ν]

∫

[

dΠX→c+g
]

. (23)

3.1 Three-body phase space b→ X + ! + ν̄

We neglect the lepton masses and parameterize the momenta as

pb = (mb, 0, 0, 0) , p! = (E!, 0, 0, E!) , pν = (Eν, Eν sin θ1, 0, Eν cos θ1) . (24)

and

E! = mb

y

2
, Eν = mb

(1 − ρ − y) (1 − λ2)
2κ

, cos θ1 = 2λ3 − 1 . (25)

with

ρ =
m2c

m2
b

, κ = 1 − (1 − cos θ1) y/2 , (26)

where we have omitted factors of mb which can be reinstated using dimensional analysis. The d-

dimensional solid angle is

Ωd =
2πd/2

Γ(d/2)
. (27)

In terms of these quantities, the phase-space integral in d = 4 − 2ε reads

∫ m2
b

m2c

dp2x

2π

∫

[dΠb→x+!+ν̄]

=
Ωd−1Ωd−2

2d+1(2π)2d−2

∫ 1−ρ

0

dy

∫ 1

0

dλ2dλ3(1 − ρ − y)2−2εκ2ε−2 (y(1 − λ2))1−2ε ((1 − λ3)λ3)−ε . (28)

In the presence of a cut on the lepton energy y > y0, the transformation y = (1 − ρ − y0)λ1 + y0 maps
the integration to the unit cube. It is simple to obtain the tree-level phase space from this result. To

this end, one multiplies with 2πδ(p2x − m2c) = 2πδ ((1 − ρ − y)λ2) and integrates over λ2.

3.2 Two-body phase space x→ c + g

We split the gluon three-momentum into a part in the direction of *px

pg = (Eg, 0, 0, 0) + Eg cos θ2 (0,
*px
|*px|

) + Eg sin θ2 (0, *p⊥) (29)

and an orthogonal part with *p⊥ · *px = 0 and *p2⊥ = 1. Expressed in terms of of these quantities, the
two-body phase space is

∫

[

dΠx→c+g
]

=
1

2(2π)d−2

∫

d cos θ2
sind−4θ2 E

d−2
g

p2x − m2c

∫

dd−2*p⊥ . (30)
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1.2 Two-body phase space x → c + g

After expanding in the small momentum of the external gluon, we encounter diagrams with
propagators raised to the second power. To calculate the discontinuity in such cases, one
replaces

1

(p2 − m2 + iε)1+n → −2πiθ(p0)
(−1)n

n!
δ(n)

(
p2 − m2

)
(7)

where δ(n) is the n-th derivative of the δ-distribution. This rule is easily derived by integrating
by part n times to transform the integral into an integral where the corresponding propagator
appears raised to the first power. After this, one applies the usual Cutkosky rules [2] to
the integral. (Note that there are no contributions from boundary terms in dimensional
regularization.) For our purposes, we only need n = 0 and n = 1. For n = 1, we need to take
a derivative with respect to either p2

g or p2
c after which they are put on the mass shell. In order

to be able to take this derivative, we need the phase space for arbitrary p2
g #= 0 and p2

c #= m2
c .

We split the gluon three-momentum into a part in the direction of %px and an orthogonal
part

pg = (Eg, 0, 0, 0) + |%pg| cos θ2 (0,
%px

|%px|
) + |%pg| sin θ2 (0, %p⊥) (8)

with %p⊥ ·%px = 0 and %p2
⊥ = 1. Expressed in terms of these quantities, the two-body phase space

is
∫

dp2
c

2π

∫
dp2

g

2π

∫
[dΠx→c+g] =

1

4(2π)d−2

∫
dp2

c

2π

∫
dp2

g

2π

∫
d cos θ2

sind−4θ2 |%pg|d−2

Ex|%pg|− cos θ2Eg%px

∫
dd−2p⊥ .

(9)
When evaluating the cut diagrams, this expression is multiplied either by (2π)2δ(p2

c−m2
c)δ(p

2
g),

by (2π)2δ′(p2
c −m2

c)δ(p
2
g) or by (2π)2δ(p2

c −m2
c)δ

′(p2
g), see (7). The latter two cases correspond

to gluon emission from the cut charm quark line and gluon emission from the cut gluon line.
For a given angle θ2, the gluon energy is

|%pg| =
Ex

√
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• There are some subtleties in the calculation of           (boundary of 
the three body phase space integration is      dependent)

δ′(p2
g)

p2
g



Status and TODO
• Calculation of real and virtual corrections is completed

• Missing steps:

Renormalization in the full theory (UV divergencies of the 
diagrams)

Renormalization in the effective theory (IR divergencies of the 
diagrams): possible issue with the presence of OEOM and its mixing 
with Omag

• Implementation in global fit

• Calculation of Darwin corrections (             ) not too complicatedk2(v · k)


